【題目】如圖,在四棱錐中,底面為等腰梯形,,其中點(diǎn)在以為直徑的圓上,,,平面平面.

1)證明:平面.

2)求二面角的正弦值.

【答案】(1)詳見(jiàn)解析;(2).

【解析】

1)連接,,根據(jù)直徑所對(duì)圓周角是直角,得到,計(jì)算出的長(zhǎng),通過(guò)勾股定理證得,再根據(jù)面面垂直的性質(zhì)定理得到平面.(2)為坐標(biāo)原點(diǎn),分別以,,的方向?yàn)?/span>,軸的正方向建立空間直角坐標(biāo)系通過(guò)計(jì)算平面和平面的法向量,計(jì)算二面角的余弦值,進(jìn)而求得其正弦值.

1)證明:連接,,因?yàn)辄c(diǎn)在以為直徑的圓上,所以.

因?yàn)?/span>,所以,.

所以.

因?yàn)?/span>為等腰梯形,

所以.

又因?yàn)?/span>,,

所以,從而得.

又因?yàn)槠矫?/span>平面,平面平面,

所以平面.

2)解:由(1)易知兩兩垂直,以為坐標(biāo)原點(diǎn),分別以,的方向?yàn)?/span>,,軸的正方向建立空間直角坐標(biāo)系,則,,,.

因?yàn)?/span>,所以,.

設(shè)平面的法向量為,平面的法向量為

,得,令,得,

,得,令,得,

所以,所以,

故二面角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】網(wǎng)約車的興起豐富了民眾出行的選擇,為民眾出行提供便利的同時(shí)也解決了很多勞動(dòng)力的就業(yè)問(wèn)題,據(jù)某著名網(wǎng)約車公司“滴滴打車”官網(wǎng)顯示,截止目前,該公司已經(jīng)累計(jì)解決退伍軍人轉(zhuǎn)業(yè)為兼職或?qū)B毸緳C(jī)三百多萬(wàn)人次,梁某即為此類網(wǎng)約車司機(jī),據(jù)梁某自己統(tǒng)計(jì)某一天出車一次的總路程數(shù)可能的取值是20、22、24、26、28、,它們出現(xiàn)的概率依次是、、、t、

(1)求這一天中梁某一次行駛路程X的分布列,并求X的均值和方差;

(2)網(wǎng)約車計(jì)費(fèi)細(xì)則如下:起步價(jià)為5元,行駛路程不超過(guò)時(shí),租車費(fèi)為5元,若行駛路程超過(guò),則按每超出(不足也按計(jì)程)收費(fèi)3元計(jì)費(fèi).依據(jù)以上條件,計(jì)算梁某一天中出車一次收入的均值和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F2在坐標(biāo)軸上,離心率為,且過(guò)點(diǎn).

(1)求雙曲線的方程;

(2)若點(diǎn)M(3m)在雙曲線上,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)處取得極小值

(1)求實(shí)數(shù)的值;

(2)設(shè),討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)m,n為平面α外兩條直線,其在平面α內(nèi)的射影分別是兩條直線m1和n1,給出下列4個(gè)命題:①m1∥n1m∥n;②m∥nm1與n1平行或重合;③m1⊥n1m⊥n;④m⊥nm1⊥n1.其中所有假命題的序號(hào)是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著我國(guó)經(jīng)濟(jì)的飛速發(fā)展,人民生活水平得到很大提高,汽車已經(jīng)進(jìn)入千千萬(wàn)萬(wàn)的家庭.大部分的車主在購(gòu)買汽車時(shí),會(huì)在轎車或者中作出選擇,為了研究某地區(qū)哪種車型更受歡迎以及汽車一年內(nèi)的行駛里程,某汽車銷售經(jīng)理作出如下統(tǒng)計(jì):

購(gòu)買了轎車(輛)

購(gòu)買了(輛)

歲以下車主

歲以下車主

(I)根據(jù)表,是否有的把握認(rèn)為年齡與購(gòu)買的汽車車型有關(guān)?

(II)圖給出的是名車主上一年汽車的行駛里程,求這名車主上一年汽車的平均行駛里程(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(III)用表中的頻率估計(jì)概率,隨機(jī)調(diào)查歲以下車主,設(shè)其中購(gòu)買了轎車的人數(shù)為,求的分布列與數(shù)學(xué)期望.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】個(gè)不同的紅球和個(gè)不同的白球,放入同一個(gè)袋中,現(xiàn)從中取出個(gè)球.

1)若取出的紅球的個(gè)數(shù)不少于白球的個(gè)數(shù),則有多少種不同的取法;

2)取出一個(gè)紅球記分,取出一個(gè)白球記分,若取出個(gè)球的總分不少于分,則有多少種不同的取法;

3)若將取出的個(gè)球放入一箱子中,記“從箱子中任意取出個(gè)球,然后放回箱子中”為一次操作,如果操作三次,求恰有一次取到個(gè)紅球并且恰有一次取到個(gè)白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,A(0,1)AB邊上的高CD所在直線的方程為x2y40,AC邊上的中線BE所在直線的方程為2xy30.

(1)求直線AB的方程;

(2)求直線BC的方程;

(3)BDE的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程

在直接坐標(biāo)系中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為.

I)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,),判斷點(diǎn)P與直線l的位置關(guān)系;

II)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案