已知對于任意實(shí)數(shù)m,不等式|5-3m|+|3m-4|≥x-
2
x
恒成立,則實(shí)數(shù)x的取值范圍是
 
考點(diǎn):絕對值不等式的解法
專題:不等式的解法及應(yīng)用
分析:由絕對值三角不等式可得|5-3m|+|3m-4|≥=1,結(jié)合條件可得 1≥x-
2
x
恒成立,即
(x+1)(x-2)
x
≤0,由此求得實(shí)數(shù)x的取值范圍.
解答: 解:由絕對值三角不等式可得|5-3m|+|3m-4|≥|5-3m+(3m-4)|=1,
又|5-3m|+|3m-4|≥x-
2
x
恒成立,
∴1≥x-
2
x
恒成立,
(x+1)(x-2)
x
≤0,
解得x≤-1,或0<x≤2,
故答案為:(-∞,-1]∪(0,2].
點(diǎn)評:本題主要考查絕對值三角不等式,分式不等式的解法,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐E-ABCD中,底面ABCD是正方形,AC與BD交于點(diǎn)O,EC⊥底面ABCD,F(xiàn)為BE的中點(diǎn).
(1)求證:DE∥平面ACF;
(2)若AB=
2
CE,在線段EO上是否存在點(diǎn)G,使CG⊥平面BDE?若存在,求出
EG
EO
的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
4
+
y2
k
=1的離心率e=3,則k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α表示平面,a,b表示直線,給定下面四個命題:
①a∥α,a⊥b→b⊥α;  
②a∥b,a⊥α→b⊥α;  
③a⊥α,a⊥b→b∥α;  
④a⊥α,b⊥α→a∥b.
其中正確的命題是
 
.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)xOy中,設(shè)圓M的半徑為1,圓心在直線x-y-1=0上,若圓M上存在點(diǎn)N,使NO=
1
2
NA,其中A(0,3),則圓心M橫坐標(biāo)的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓O與△ABC的邊AB,AC分別相切于點(diǎn)B,D,與BC邊相交于點(diǎn)E,且∠BED=60°,AB=1,則圓O的半徑長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線x2=
1
8
y的焦點(diǎn)作直線交拋物線于A、B兩點(diǎn),線段AB的中點(diǎn)M的縱坐標(biāo)為2,則線段AB長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B是圓x2+y2=2x+4y上的兩點(diǎn),O是坐標(biāo)原點(diǎn),若|OA|=|OB|,則直線AB的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,F(xiàn)1,F(xiàn)2是橢圓C1
x2
m2
+
y2
n2
=1(m>n>0)與雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)的公共焦點(diǎn),C1,C2的離心率分別記為e1,e2.A是C1,C2在第一象限的公共點(diǎn),若C2的一條漸近線是線段AF1的中垂線,則
1
e
2
1
+
1
e
2
2
=( 。
A、2
B、
5
2
C、
7
2
D、4

查看答案和解析>>

同步練習(xí)冊答案