已知點(diǎn)C(1,0),點(diǎn)A、B是⊙O:x2+y2=9上任意兩個(gè)不同的點(diǎn),且滿足·=0,設(shè)P為弦AB的中點(diǎn).

(1)求點(diǎn)P的軌跡T的方程;
(2)試探究在軌跡T上是否存在這樣的點(diǎn):它到直線x=-1的距離恰好等于到點(diǎn)C的距離?若存在,求出這樣的點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

(1)x2-x+y2=4
(2)存在,(1,-2)和(1,2)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:+=1(a>b>0),直線l:y=kx+m(k≠0,m≠0),直線l交橢圓C與P,Q兩點(diǎn).
(Ⅰ)若k=1,橢圓C經(jīng)過(guò)點(diǎn)(,1),直線l經(jīng)過(guò)橢圓C的焦點(diǎn)和頂點(diǎn),求橢圓方程;
(Ⅱ)若k=,b=1,且kOP,k,kOQ成等比數(shù)列,求三角形OPQ面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xoy中,已知橢圓C:=1(a>b≥1)的離心率e=,且橢圓C上的點(diǎn)到點(diǎn)Q (0,3)的距離最大值為4,過(guò)點(diǎn)M(3,0)的直線交橢圓C于點(diǎn)A、B.
(1)求橢圓C的方程。
(2)設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)|AB|<時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓G:過(guò)點(diǎn),,C、D在該橢圓上,直線CD過(guò)原點(diǎn)O,且在線段AB的右下側(cè).
(1)求橢圓G的方程;
(2)求四邊形ABCD 的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn),且兩焦點(diǎn)與短軸的兩個(gè)端點(diǎn)的連線構(gòu)成一正方形.(12分)
(1)求橢圓的方程;
(2)直線與橢圓交于,兩點(diǎn),若線段的垂直平分線經(jīng)過(guò)點(diǎn),求
為原點(diǎn))面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C的兩焦點(diǎn)分別為,長(zhǎng)軸長(zhǎng)為6,
⑴求橢圓C的標(biāo)準(zhǔn)方程;
⑵已知過(guò)點(diǎn)(0,2)且斜率為1的直線交橢圓C于A 、B兩點(diǎn),求線段AB的長(zhǎng)度。.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,離心率為,且過(guò)點(diǎn)(4,-).
(1)求雙曲線方程;
(2)若點(diǎn)M(3,m)在雙曲線上,求證:·=0;
(3)求△F1MF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:)的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓C的左焦點(diǎn),T為直線上任意一點(diǎn),過(guò)F作TF的垂線交橢圓C于點(diǎn)P,Q.
(i)證明:OT平分線段PQ(其中O為坐標(biāo)原點(diǎn));
(ii)當(dāng)最小時(shí),求點(diǎn)T的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的左右頂點(diǎn)分別為,離心率
(1)求橢圓的方程;
(2)若點(diǎn)為曲線:上任一點(diǎn)(點(diǎn)不同于),直線與直線交于點(diǎn)為線段的中點(diǎn),試判斷直線與曲線的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案