(10分)不等式,當(dāng)時(shí)恒成立.求的取值范圍.

。

解析試題分析:由已知得 ....................1分
(1)當(dāng)時(shí)
則 ................2分
      ① ......................3分

.....................4分
①式無(wú)實(shí)數(shù)解....................................5分
(2)當(dāng)時(shí)
則 
  ......................6分
  ................7分

  ......................8分
  ..............9分
綜合以上兩種情況可知。 ....................10分
考點(diǎn):本題主要考查對(duì)數(shù)函數(shù)的性質(zhì)及其應(yīng)用,二次函數(shù)圖象和性質(zhì)。
點(diǎn)評(píng):典型題,復(fù)合對(duì)數(shù)函數(shù)問(wèn)題,應(yīng)特別注意其自身定義域。本題首先化成關(guān)于對(duì)數(shù)函數(shù)的二次函數(shù),利用二次函數(shù)圖象和性質(zhì)得到所求范圍。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
專(zhuān)家通過(guò)研究學(xué)生的學(xué)習(xí)行為,發(fā)現(xiàn)學(xué)生的注意力隨著老師講課時(shí)間的變化而變化,講課開(kāi)始時(shí),學(xué)生的興趣激增,中間有一段時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開(kāi)始分散,設(shè)表示學(xué)生注意力隨時(shí)間(分鐘)的變化規(guī)律(越大,表明學(xué)生注意力越大),經(jīng)過(guò)試驗(yàn)分析得知:
(Ⅰ)講課開(kāi)始后多少分鐘,學(xué)生的注意力最集中?能堅(jiān)持多少分鐘?
(Ⅱ)講課開(kāi)始后5分鐘時(shí)與講課開(kāi)始后25分鐘時(shí)比較,何時(shí)學(xué)生的注意力更集中?
(Ⅲ)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到180,那么經(jīng)過(guò)適當(dāng)安排,老師能否在學(xué)生達(dá)到所需的狀態(tài)下講完這道題目?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分8分) 某車(chē)間生產(chǎn)某機(jī)器的兩種配件A和B,生產(chǎn)配件A成本費(fèi)y與該車(chē)間的工人人數(shù)x成反比,而生產(chǎn)配件B成本費(fèi)y與該車(chē)間的工人人數(shù)x成正比,如果該車(chē)間的工人人數(shù)為10人時(shí),這兩項(xiàng)費(fèi)用y和y分別為2萬(wàn)元和8萬(wàn)元,那么要使這兩項(xiàng)費(fèi)用之和最小,該車(chē)間的工人人數(shù)x應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分13分)某化工企業(yè)2012年底投入100萬(wàn)元,購(gòu)入一套污水處理設(shè)備.該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬(wàn)元,此外每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬(wàn)元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬(wàn)元.設(shè)該企業(yè)使用該設(shè)備年的年平均污水處理費(fèi)用為(萬(wàn)元)。
(1)用表示
(2)當(dāng)該企業(yè)的年平均污水處理費(fèi)用最低時(shí),企業(yè)需重新更換新的污水處理設(shè)備.則該企業(yè)幾年后需要重新更換新的污水處理設(shè)備。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在經(jīng)濟(jì)學(xué)中,函數(shù)的邊際函數(shù)定義為.某公司每月最多生產(chǎn)100臺(tái)報(bào)警系統(tǒng)裝置,生產(chǎn)臺(tái)()的收入函數(shù)為(單位:元),其成本函數(shù)為(單位:元),利潤(rùn)是收入與成本之差.
(1)求利潤(rùn)函數(shù)及邊際利潤(rùn)函數(shù)的解析式,并指出它們的定義域;
(2)利潤(rùn)函數(shù)與邊際利潤(rùn)函數(shù)是否具有相同的最大值?說(shuō)明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分分)已知函數(shù),是不同時(shí)為零的常數(shù)).
(1)當(dāng)時(shí),若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;
(2)求證:函數(shù)內(nèi)至少存在一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
某商場(chǎng)根據(jù)調(diào)查,估計(jì)家電商品從年初(1月)開(kāi)始的個(gè)月內(nèi)累計(jì)的需求量(百件)為
(1)求第個(gè)月的需求量的表達(dá)式.
(2)若第個(gè)月的銷(xiāo)售量滿足(單位:百件),每件利潤(rùn)元,求該商場(chǎng)銷(xiāo)售該商品,求第幾個(gè)月的月利潤(rùn)達(dá)到最大值?最大是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)某單位用2 160萬(wàn)元購(gòu)得一塊空地,計(jì)劃在該地塊上建造一棟至少10層,每層2 000平方米的樓房,經(jīng)測(cè)算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費(fèi)用為560+48x(單位:元).為了使樓房每平方米的平均綜合費(fèi)用最少,該樓房應(yīng)建為多少層?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求函數(shù)f(x)="sinx+cosx+sinxcosx." x∈﹝0,﹞的最大值并求出相應(yīng)的x值.

查看答案和解析>>

同步練習(xí)冊(cè)答案