【題目】已知p:m∈R,且m+1≤0,q:x∈R,x2+mx+1>0恒成立,若p∧q為假命題且p∨q為真命題,則m的取值范圍是__________________

【答案】

【解析】

試題分析】先分別求出命題滿足的條件(取值的范圍)分別為,再依據(jù)題設(shè)可推證出命題中只有一個(gè)命題是正確的的結(jié)論:然后分類為“或“真”建立關(guān)于實(shí)數(shù)的不等式組,通過解不等式組求解:

命題p:m∈R且m+1≤0,解得m﹣1.

命題q:x∈R,x2+mx+1>0恒成立

∴△=m2-4<0,解得-2<m<2.

若“p∨q”為真,“p∧q”為假,

則p與q必然一真一假,

,

解得﹣1<m<2或m-2.

∴實(shí)數(shù)m的取值范圍是﹣1<m<2或m-2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為F,過F作平行于x軸的直線交拋物線于A,B兩點(diǎn)(AB的左側(cè)),若△AOB的面積為2.

(1)求拋物線C的方程;

(2)設(shè)P是拋物線C的準(zhǔn)線上一點(diǎn),Q是拋物線上的一點(diǎn),若PF⊥QF,求證:直線PQ與拋物線相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P﹣ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD中點(diǎn),PA⊥底面ABCD,PA=2.

(1)證明:平面PBE⊥平面PAB;
(2)求直線PC與平面PBE所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)在區(qū)間上的最大、最小值;

2)求證:在區(qū)間上,函數(shù)的圖象在函數(shù)的圖象的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)計(jì)如圖所示的四個(gè)電路圖,條件p:“開關(guān)S閉合”;條件q:“燈泡L亮”,則p是q的充分不必要條件的電路圖是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2013年,首都北京經(jīng)歷了59年來霧霾天氣最多的一個(gè)月.經(jīng)氣象局統(tǒng)計(jì),北京市從1月1日至1月30日的30天里有26天出現(xiàn)霧霾天氣,《環(huán)境空氣質(zhì)量指數(shù)(AQI)技術(shù)規(guī)定(試行)》將空氣質(zhì)量指數(shù)分為六級,其中,中度污染(四級)指數(shù)為151~200;重度污染(五級)指數(shù)為201~300;嚴(yán)重污染(六級)指數(shù)大于300.下面表1是某觀測點(diǎn)記錄的4天里AQI指數(shù)M與當(dāng)天的空氣水平可見度y(千米)的情況,表2是某氣象觀測點(diǎn)記錄的北京1月1日到1月30日AQI指數(shù)頻數(shù)的統(tǒng)計(jì)結(jié)果.

表1 

AQI指數(shù)M

900

700

300

100

空氣可見度y/千米

0.5

3.5

6.5

9.5

表2 

AQI指數(shù)

[0,200]

(200,400]

(400,600]

(600,800]

(800,1000]

頻數(shù)

3

6

12

6

3

(1)設(shè)變量x=,根據(jù)表1的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

(2)根據(jù)表2估計(jì)這30天AQI指數(shù)的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)x33xyf(x)上一點(diǎn)P(1,-2),過點(diǎn)P作直線l.

(1)求使直線lyf(x)相切且以P為切點(diǎn)的直線方程;

(2)求使直線lyf(x)相切且切點(diǎn)異于P的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知恒等式(1+x+x2n=a0+a1x+a2x2+…+a2nx2n
(1)求a1+a2+a3+…+a2n和a2+2a3+22a4+…+22n2a2n的值;
(2)當(dāng)n≥6時(shí),求證: a2+2A a3+…+22n2 a2n<49n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax(a∈R),g(x)= (f′(x)為f(x)的導(dǎo)函數(shù)),若方程g(f(x))=0有四個(gè)不等的實(shí)根,則a的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案