【題目】如圖, 是直徑, 所在的平面, 是圓周上不同于的動(dòng)點(diǎn).
(1)證明:平面平面;
(2)若,且當(dāng)二面角的正切值為時(shí),求直線與平面所成的角的正弦值.
【答案】(1)詳見解析;(2).
【解析】試題分析:(1)先根據(jù)圓的性質(zhì)得,再根據(jù)線面垂直得,根據(jù)線面垂直判定定理得平面,最后根據(jù)面面垂直判定定理得結(jié)論(2)先根據(jù)二面角定義得二面角的平面角為,再過過作于,易得為直線與平面所成的角.最后通過解三角形可得結(jié)論
試題解析:(1)證明:∵在圓上, 為圓的直徑,
∴,
又∵所在的平面,∴,
而,∴平面,
由于平面,∴平面平面.
(2)解:如圖,過作于,連接,
∵平面,∴,
∴平面,則即為所求的角,
∵平面,
∴為二面角的平面角.
又, ,∴,
在中, ,
在中, ,
即直線與平面所成的角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過市場調(diào)查,得到某種產(chǎn)品的資金投入x(單位:萬元)與獲得的利潤y(單位:萬元)的數(shù)據(jù),如表所示:
資金投入x | 2 | 3 | 4 | 5 | 6 |
利潤y | 2 | 3 | 5 | 6 | 9 |
(1)畫出數(shù)據(jù)對應(yīng)的散點(diǎn)圖;
(2)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程x+;
(3)現(xiàn)投入資金10萬元,求獲得利潤的估計(jì)值為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第一屆“一帶一路”國際合作高峰論壇于2017年5月14日至15日在北京舉行,為了保護(hù)各國元首的安全,將5個(gè)安保小組全部安排到指定三個(gè)區(qū)域內(nèi)工作,且這三個(gè)區(qū)域每個(gè)區(qū)域至少有一個(gè)安保小組,則這樣的安排的方法共有( )
A.96種
B.100種
C.124種
D.150種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市準(zhǔn)備在道路的一側(cè)修建一條運(yùn)動(dòng)比賽道,賽道的前一部分為曲線段,該曲線段是函數(shù), 時(shí)的圖象,且圖象的最高點(diǎn)為.賽道的中間部分為長千米的直線跑道,且.賽道的后一部分是以為圓心的一段圓弧.
(1)求的值和的大。
(2)若要在圓弧賽道所對應(yīng)的扇形區(qū)域內(nèi)建一個(gè)“矩形草坪”,矩形的一邊在道路上,一個(gè)頂點(diǎn)在半徑上,另外一個(gè)頂點(diǎn)在圓弧上,且,求當(dāng)“矩形草坪”的面積取最大值時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA+acosB=0.
(1)求角B的大;
(2)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.極坐標(biāo)系中方程ρ2﹣4ρcosθ=0和ρ﹣4cosθ=0表示的是同一曲線
B.
C.不等式|a+b|≥|a|﹣|b|等號成立的條件為ab≤0
D.在極坐標(biāo)系中方程 表示的圓和一條直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2|x|.
(1)將函數(shù)f(x)寫成分段函數(shù);
(2)判斷函數(shù)的奇偶性,并畫出函數(shù)圖象.
(3)若函數(shù)在[a, +∞)上單調(diào),求a的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,是等邊三角形,已知,.
(1)設(shè)是上的一點(diǎn),證明:平面平面;
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 的定義域?yàn)镽
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的值域
(2)若函數(shù)f(x)是奇函數(shù),①求a的值;②解不等式f(3﹣m)+f(3﹣m2)>0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com