【題目】已知直線l:x+2y-2=0.試求:
(1)點P(-2,-1)關(guān)于直線l的對稱點坐標;
(2)直線l關(guān)于點(1,1)對稱的直線方程.
【答案】(1);(2).
【解析】
試題分析: (1)設(shè)出點關(guān)于直線的對稱點坐標,根據(jù)兩點間線段的中點在直線上與兩點所在直線與直線互相垂直,由中點坐標公式和兩直線垂直斜率乘積為可得關(guān)于對稱點坐標的方程組,解得點的坐標;(2)設(shè)出直線上任一點的坐標,利用此點關(guān)于的對稱點與直線的方程,可得所求的直線方程.
試題解析:(1) 設(shè)點關(guān)于直線的對稱點為,
則線段的中點在對稱軸上,且.
∴即的坐標為.
(2)設(shè)直線關(guān)于點的對稱直線為,則直線上任一點關(guān)于點的對稱點一定在直線上,反之也成立.由
將的坐標代入直線的方程得.
∴直線的方程為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù),),在處的切線為.
(1)求函數(shù)的解析式;
(2)在軸上是否存在一點,使得過點可以作的三條切錢?若存在,請求出橫坐標為整數(shù)的點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是奇函數(shù).
求實數(shù)m,n的值;
若函數(shù)的定義域為判斷函數(shù)的單調(diào)性,并用定義證明;是否存在實數(shù)t,使得關(guān)于x的不等式在上有解?若存在,求出t的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小明跟父母、爺爺奶奶一同參加《中國詩詞大會》的現(xiàn)場錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為
A. 60 B. 72 C. 84 D. 96
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將編號的小球放入編號為的盒子中,要求不允許有空盒子,且球與盒子的號不能相同,則不同的放球方法有( )
A. 16種 B. 12種 C. 9種 D. 6種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一只藥用昆蟲的產(chǎn)卵數(shù)與一定范圍內(nèi)與溫度有關(guān), 現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:
溫度/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
產(chǎn)卵數(shù)/個 | 6 | 11 | 20 | 27 | 57 | 77 |
(1)若用線性回歸模型,求關(guān)于的回歸方程=x+(精確到0.1);
(2)若用非線性回歸模型求關(guān)的回歸方程為 且相關(guān)指數(shù)
( i )試與 (1)中的線性回歸模型相比,用 說明哪種模型的擬合效果更好.
( ii )用擬合效果好的模型預測溫度為時該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).
附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn), 其回歸直線=x+的斜率和截距的最小二乘估計為,,相關(guān)指數(shù).
。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點,PA⊥平面ABC,則四面體P-ABC的四個面中,直角三角形的個數(shù)有( )
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+1)﹣loga(1﹣x),a>0且a≠1.
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并予以證明;
(3)當a>1時,求使f(x)>0的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an}中,已知a1=2,an+1=3an+2n﹣1.
(1)求證:數(shù)列{an+n}為等比數(shù)列;
(2)記bn=an+(1﹣λ)n,且數(shù)列{bn}的前n項和為Tn , 若T3為數(shù)列{Tn}中的最小項,求λ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com