【題目】如圖,斜三棱柱ABC﹣A1B1C1的所有棱長(zhǎng)均為a,M是BC的中點(diǎn),側(cè)面B1C1CB⊥底面ABC,且AC1⊥BC.
(Ⅰ)求證:BC⊥C1M;
(Ⅱ)求二面角A1﹣AB﹣C的平面角的余弦值.
【答案】(Ⅰ)證明:連接AM,∵△ABC是正三角形,∴AM⊥BC,又AC1⊥BC,且AC1∩AM=A,
∴BC⊥平面AC1M,
∴BC⊥C1M.
(Ⅱ)解:以MB,MA,MC1為x,y,z軸建立空間直角坐標(biāo)系,
則 ,
∴ .
設(shè)平面A1AB的法向量為 ,
則 ,
∴ .
又平面ABC的法向量是 ,
∴
∴二面角A1﹣AB﹣C的平面角的余弦值為: .
【解析】(Ⅰ)連接AM,由△ABC是正三角形,得AM⊥BC,又AC1⊥BC,可得BC⊥平面AC1M,由此能證明BC⊥C1M.(Ⅱ)以MB,MA,MC1為x,y,z軸建立空間直角坐標(biāo)系,求出A,B,A1點(diǎn)的坐標(biāo),則 , 可求,設(shè)平面A1AB的法向量為 ,
從而列出方程組,求解可得 ,由此能求出二面角A1﹣AB﹣C的余弦值.
【考點(diǎn)精析】本題主要考查了空間中直線與直線之間的位置關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,(其中, 為自然對(duì)數(shù)的底數(shù), ……).
(1)令,求的單調(diào)區(qū)間;
(2)已知在處取得極小值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知n為正整數(shù),數(shù)列{an}滿足an>0, ,設(shè)數(shù)列{bn}滿足
(1)求證:數(shù)列 為等比數(shù)列;
(2)若數(shù)列{bn}是等差數(shù)列,求實(shí)數(shù)t的值;
(3)若數(shù)列{bn}是等差數(shù)列,前n項(xiàng)和為Sn , 對(duì)任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求滿足條件的所有整數(shù)a1的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:如果函數(shù)f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)滿足 , ,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”.已知函數(shù)f(x)=x3﹣x2+a是[0,a]上的“雙中值函數(shù)”,則實(shí)數(shù)a的取值范圍是( )
A.
B.( )
C.( ,1)
D.( ,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)是定義在(0,+∞)上的減函數(shù),滿足f(x)+f(y)=f(xy).
(1)求證: ;
(2)若f(4)=﹣4,解不等式 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)如圖,有一個(gè)長(zhǎng)方形地塊ABCD,邊AB為2km, AD為4 km.,地塊的一角是濕地(圖中陰影部分),其邊緣線AC是以直線AD為對(duì)稱軸,以A為頂點(diǎn)的拋物線的一部分.現(xiàn)要鋪設(shè)一條過邊緣線AC上一點(diǎn)P的直線型隔離帶EF,E,F(xiàn)分別在邊AB,BC上(隔離帶不能穿越濕地,且占地面積忽略不計(jì)).設(shè)點(diǎn)P到邊AD的距離為t(單位:km),△BEF的面積為S(單位: ).
(1)求S關(guān)于t的函數(shù)解析式,并指出該函數(shù)的定義域;
(2)是否存在點(diǎn)P,使隔離出的△BEF面積S超過3 ?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱錐S﹣ABCD中,E,M,N分別是BC,CD,SC的中點(diǎn),動(dòng)點(diǎn)P在線段MN上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論中恒成立的個(gè)數(shù)為( )
(1)EP⊥AC;
(2)EP∥BD;
(3)EP∥面SBD;
(4)EP⊥面SAC.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心是直線x﹣y+1=0與x軸的交點(diǎn),且圓C與(x﹣2)2+(y﹣4)2=9相外切,若過點(diǎn)P(﹣1,1)的直線l與圓C交于A,B兩點(diǎn),當(dāng)∠ACB最小時(shí),弦AB的長(zhǎng)為( )
A.4
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos2x的圖象向左平移 個(gè)單位后得到函數(shù)g(x)的圖象,若使|f(x1)﹣g(x2)|=2成立x1 , x2的滿足 ,則φ的值為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com