【題目】關(guān)于x的不等式2<log2(x+5)<3的整數(shù)解的集合為

【答案】{0,1,2}
【解析】解:由2<log2(x+5)<3,得log24<log2(x+5)<log28,即4<x+5<8,∴﹣1<x<3.
∴不等式2<log2(x+5)<3的整數(shù)解的集合為:{0,1,2}.
所以答案是:{0,1,2}.
【考點(diǎn)精析】本題主要考查了指、對(duì)數(shù)不等式的解法的相關(guān)知識(shí)點(diǎn),需要掌握指數(shù)不等式的解法規(guī)律:根據(jù)指數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化;對(duì)數(shù)不等式的解法規(guī)律:根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合設(shè)U={x|﹣3<x<3,x∈Z},A={1,2},B={﹣2,﹣1,2},則A∪UB=(
A.{1}
B.{1,2}
C.{2}
D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且f (2﹣x)=f(x)當(dāng)x∈[0,1]時(shí),f (x)=ex , 若函數(shù)y=[f (x)]2+(m+l)f(x)+n在區(qū)間[﹣k,k](k>0)內(nèi)有奇數(shù)個(gè)零點(diǎn),則m+n=(
A.﹣2
B.0
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若集合A={x|﹣2<x<4},B={x|x﹣m<0}.
(1)若m=3,全集U=A∪B,試求A∩(UB);
(2)若A∩B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={1,2,3},B={1,3},則A∩B=(
A.{2}
B.{1,2}
C.{1,3}
D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x+x3 , x1 , x2 , x3∈R,x1+x2>0,x2+x3>0,x3+x1>0,那么f(x1)+f(x2)+f(x3)的值(
A.一定大于0
B.等于0
C.一定小于0
D.正負(fù)都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】曲線y=x3﹣2x+1在點(diǎn)(1,0)處的切線方程為(
A.y=x﹣1
B.y=﹣x+1
C.y=2x﹣2
D.y=﹣2x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=f(x)在R上為減函數(shù),且f(3a)<f(﹣2a+10),則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,﹣2)
B.(0,+∞)
C.(2,+∞)
D.(﹣∞,﹣2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題:“若x2>1,則x<﹣1或x>1”的逆否命題是(
A.若x2>1,則﹣1≤x≤1
B.若﹣1≤x≤1,則x2≤1
C.若﹣1<x<1,則x2<1
D.若x<﹣1或x>1,則x2>1

查看答案和解析>>

同步練習(xí)冊(cè)答案