已知橢圓的離心率為,橢圓的的一個頂點和兩個焦點構(gòu)成的三角形的面積為4,
(1)求橢圓C的方程;
(2)已知直線與橢圓C交于A, B兩點,若點M(, 0),求證為定值.

(1);(2)參考解析

解析試題分析:(1)要求橢圓的方程需要找到關于的兩個等式即可.由離心率可以得到一個,又由橢圓的的一個頂點和兩個焦點構(gòu)成的三角形的面積為4,可以得到一個等式,即可求出橢圓的方程.
(2)由線與橢圓C交于A, B兩點,若點M(, 0),所以要表示出的結(jié)果,通過直線方程與橢圓方程聯(lián)立即可得一個二次方程.寫出韋達定理,再根據(jù)向量與向量的數(shù)量積所得到的關系式即可得到一個定值.
試題解析:(1)因為滿足,,
.解得,則橢圓方程為.         4分
(2)把直線代入橢圓的方程得
解得,

=
=
==
所以為定值.         12分
考點:1.橢圓的性質(zhì).2.直線與橢圓的位置關系.3.向量的數(shù)量積.4.運算能力的鍛煉.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知分別是橢圓的左,右頂點,點在橢圓 上,且直線與直線的斜率之積為

(1)求橢圓的標準方程;
(2)點為橢圓上除長軸端點外的任一點,直線與橢圓的右準線分別交于點,
①在軸上是否存在一個定點,使得?若存在,求點的坐標;若不存在,說明理由;
②已知常數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓,左、右兩個焦點分別為、,上頂點,為正三角形且周長為6,直線與橢圓相交于兩點.
(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,直線與圓相切.
(1)求橢圓的方程;
(2)設直線與橢圓的交點為,求弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左、右焦點分別為,離心率為,P是橢圓上一點,且面積的最大值等于2.
(1)求橢圓的方程;
(2)過點M(0,2)作直線與直線垂直,試判斷直線與橢圓的位置關系5
(3)直線y=2上是否存在點Q,使得從該點向橢圓所引的兩條切線相互垂直?若存在,求點Q的坐標;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設點、分別是橢圓的左、右焦點,為橢圓上任意一點,且的最小值為.
(I)求橢圓的方程;
(II)設直線(直線不重合),若、均與橢圓相切,試探究在軸上是否存在定點,使點、的距離之積恒為1?若存在,請求出點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左、右焦點分別為、,橢圓上的點滿足,且△的面積為
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓的左、右頂點分別為、,過點的動直線與橢圓相交于、兩點,直線與直線的交點為,證明:點總在直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知分別是橢圓的左、右焦點,橢圓與拋物線有一個公共的焦點,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓相交于、兩點,若(為坐標原點),試判斷直線與圓的位置關系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

給定橢圓C:,若橢圓C的一個焦點為F(,0),其短軸上的一個端點到F的距離為
(I)求橢圓C的方程;
(II)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點A,B,點Q滿足=0,其中N為橢圓的下頂點,求直線在y軸上截距的取值范圍.

查看答案和解析>>

同步練習冊答案