【題目】已知在直角坐標(biāo)系xOy中,曲線C1: (θ為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同單位長(zhǎng)度的極坐標(biāo)系中,曲線C2:ρsin( )=1.
(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)曲線C1上恰好存在三個(gè)不同的點(diǎn)到曲線C2的距離相等,分別求這三個(gè)點(diǎn)的極坐標(biāo).
【答案】
(1)解:曲線C1: (θ為參數(shù)),兩式平方相加可得:x2+y2=4,
曲線C2:ρsin( )=1,展開(kāi)可得: + =1,化為直角坐標(biāo)方程: =0
(2)解:原點(diǎn)O到直線C2: =0的距離d= =1= r,
直線 y+x=0與圓的兩個(gè)交點(diǎn)A,B滿足條件.
聯(lián)立 ,解得 或 ,
利用 ,分別化為極坐標(biāo)A ,B .
設(shè)與直線: =0平行且與圓相切的直線方程為: y+x+m=0,(m<0).
聯(lián)立 ,化為:4y2+2 my+m2﹣4=0,
令△=12m2﹣16(m2﹣4)=0,解得m=﹣4.
∴ =0,
解得y= ,x=1.
∴切點(diǎn)C ,化為極坐標(biāo)C .
∴滿足條件的這三個(gè)點(diǎn)的極坐標(biāo)分別為:極坐標(biāo)A ,B ,C .
【解析】(1)曲線C1: (θ為參數(shù)),兩式平方相加可得直角坐標(biāo)方程;曲線C2:ρsin( )=1,展開(kāi)可得: + =1,把 代入即可化為直角坐標(biāo)方程.(2)原點(diǎn)O到直線C2: =0的距離d=1= r,直線 y+x=0與圓的兩個(gè)交點(diǎn)A,B滿足條件.聯(lián)立 ,解出利用 ,分別化為極坐標(biāo)A,B.
設(shè)與直線: =0平行且與圓相切的直線方程為: y+x+m=0,(m<0).與圓的方程聯(lián)立化為:4y2+2 my+m2﹣4=0,令△=0,解得m,即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點(diǎn),x= 為y=f(x)圖象的對(duì)稱(chēng)軸,且f(x)在( , )上單調(diào),則ω的最大值為( )
A.11
B.9
C.7
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E: + =1(a>b>0)過(guò)點(diǎn) ,且離心率e為 .
(1)求橢圓E的方程;
(2)設(shè)直線x=my﹣1(m∈R)交橢圓E于A,B兩點(diǎn),判斷點(diǎn)G 與以線段AB為直徑的圓的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確命題的個(gè)數(shù)是( ) ①對(duì)于命題p:x∈R,使得x2+x+1<0,則¬p:x∈R,均有x2+x+1>0;
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
③回歸直線的斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程為 =1.23x+0.08;
④m=3是直線(m+3)x+my﹣2=0與直線mx﹣6y+5=0互相垂直的充要條件.
A.1
B.3
C.2
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次試驗(yàn)中,有兩個(gè)試驗(yàn)數(shù)據(jù),統(tǒng)計(jì)的結(jié)果如下面的表格1.
(1)在給出的坐標(biāo)系中畫(huà)出的散點(diǎn)圖; 并判斷正負(fù)相關(guān);
(2)填寫(xiě)表格2,然后根據(jù)表格2的內(nèi)容和公式求出對(duì)的回歸直線方程,并估計(jì)當(dāng)為10時(shí)的值是多少?(公式:,)
1 | 2 | 3 | 4 | 5 | |
2 | 3 | 4 | 4 | 5 |
表1
表格2
序號(hào) |
|
|
|
|
1 | 1 | 2 | ||
2 | 2 | 3 | ||
3 | 3 | 4 | ||
4 | 4 | 4 | ||
5 | 5 | 5 | ||
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,曲線C:ρ=2acosθ(a>0),l:ρcos(θ﹣ )= ,C與l有且僅有一個(gè)公共點(diǎn).
(Ⅰ)求a;
(Ⅱ)O為極點(diǎn),A,B為C上的兩點(diǎn),且∠AOB= ,求|OA|+|OB|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐S﹣ABCD中,底面ABCD為直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB,M,N分別為SA,SB的中點(diǎn),E為CD中點(diǎn),過(guò)M,N作平面MNPQ分別與BC,AD交于點(diǎn)P,Q,若 =t .
(1)當(dāng)t= 時(shí),求證:平面SAE⊥平面MNPQ;
(2)是否存在實(shí)數(shù)t,使得二面角M﹣PQ﹣A的平面角的余弦值為 ?若存在,求出實(shí)數(shù)t的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AB=BC=CA=2,AA1=4,D為A1B1的中點(diǎn),E為棱BB1上的點(diǎn),AB1⊥平面C1DE,且B1,C1,D,E四點(diǎn)在同一球面上,則該球的表面積為( 。
A. 9π B. 11π C. 12π D. 14π
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com