已知某幾何體的三視圖如圖所示,則該幾何體的體積等于
 

考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:幾何體是三棱錐,由三視圖知三棱錐的一條側(cè)棱與底面垂直,高為5,底面是直角三角形,兩直角邊長(zhǎng)分別為3、4.把數(shù)據(jù)代入棱錐的體積公式計(jì)算可得答案.
解答: 解:由三視圖知:幾何體是三棱錐,且三棱錐的一條側(cè)棱與底面垂直,高為5,
底面是直角三角形,兩直角邊長(zhǎng)分別為3、4.
∴幾何體的體積V=
1
3
×
1
2
×3×4×5=10.
故答案為:10.
點(diǎn)評(píng):本題考查了由三視圖求幾何體的體積,解答此類問(wèn)題的關(guān)鍵是判斷幾何體的形狀及數(shù)據(jù)所對(duì)應(yīng)的幾何量.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,過(guò)左焦點(diǎn)F(-
3
,0)且斜率為k的直線交橢圓E于A,B兩點(diǎn),線段AB的中點(diǎn)為M,直線l:x+4ky=0交橢圓E于C,D兩點(diǎn).
(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:點(diǎn)M在直線l上;
(Ⅲ)是否存在實(shí)數(shù)k,使得三角形BDM的面積是三角形ACM的3倍?若存在,求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間[-4,4]內(nèi)任取兩個(gè)實(shí)數(shù)a,b,則使函數(shù)f(x)=x2+
a
x
+b有零點(diǎn)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)不等式組
x+y-4≤0
x-y+4≥0
y≥0
表示的平面區(qū)域?yàn)镸,不等式組
-t≤x≤t
0≤y≤4-t
(0≤t≤4)表示的平面區(qū)域?yàn)镹.在M內(nèi)隨機(jī)取一個(gè)點(diǎn),這個(gè)點(diǎn)在N內(nèi)的概率為P.①當(dāng)t=1時(shí),P=
 
;②P的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(
x
-1)9
的展開式中任取一項(xiàng),設(shè)所取項(xiàng)含x的次數(shù)為非負(fù)整數(shù)的項(xiàng)的概率為P,則
1
0
xPdx等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間[-1,1]上隨機(jī)任取兩個(gè)數(shù)x,y,則滿足x2+y2
1
4
的概率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b為x2+2000x+1=0的兩根,則(1+2012a+a2)(1+2013b+b2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從邊長(zhǎng)為1的正方形的中心和頂點(diǎn)這五點(diǎn)中,隨機(jī)(等可能)取兩點(diǎn),則該兩點(diǎn)間的距離為
2
2
的概率是(  )
A、
1
3
B、
1
2
C、
2
5
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖可能是下列哪個(gè)函數(shù)的圖象( 。
A、y=2x-x2-1
B、y=
2xsinx
4x+1
C、y=(x2-2x)ex
D、y=
x
lnx

查看答案和解析>>

同步練習(xí)冊(cè)答案