【題目】某食品企業(yè)一個(gè)月內(nèi)被消費(fèi)者投訴的次數(shù)用表示.據(jù)統(tǒng)計(jì),隨機(jī)變量的概率分布如下表所示.
0 | 1 | 2 | 3 | |
0.1 | 0.3 |
(1)求的值和的數(shù)學(xué)期望;
(2)假設(shè)一月份與二月份被消費(fèi)者投訴的次數(shù)互不影響,求該企業(yè)在這兩個(gè)月內(nèi)共被消費(fèi)者投訴2次的概率.
【答案】(1);(2).
【解析】試題分析:(1)利用分布列中對(duì)于隨機(jī)變量的所有可能的取值,其相應(yīng)的概率之和都是,即,即可求出值,然后利用數(shù)學(xué)期望公式求解即可;(2)由題意得,該企業(yè)在這兩個(gè)月內(nèi)共被消費(fèi)者投訴次的事件分解成兩個(gè)互斥事件之和,分別求出這兩個(gè)事件的概率后相加即可.
試題解析:(1)由概率分布的性質(zhì)有,解得.
∴的概率分布為:
0 | 1 | 2 | 3 | |
0.1 | 0.3 | 0.4 | 0.2 |
∴ .
(2)設(shè)事件表示“兩個(gè)月內(nèi)共被投訴2次”;
事件表示“兩個(gè)月內(nèi)有一個(gè)月被投訴2次,另外一個(gè)月被投訴0次”;
事件表示“兩個(gè)月內(nèi)每個(gè)月均被投訴1次”.
則由事件的獨(dú)立性,得
,
,
∴ .
故該企業(yè)在這兩個(gè)月內(nèi)共被消費(fèi)者投訴2次的概率為0.17.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若m=0,求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的值域?yàn)镽,求實(shí)數(shù)m的取值范圍;
(3)若函數(shù)f(x)在區(qū)間上是增函數(shù),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的值域;
(2)若時(shí),函數(shù)的最小值為,求的值和函數(shù) 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),P、Q分別為直線與x軸、y軸的交點(diǎn),線段PQ的中點(diǎn)為M.
(Ⅰ)求直線的直角坐標(biāo)方程;
(Ⅱ)以坐標(biāo)原點(diǎn)O為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求點(diǎn)M的極坐標(biāo)和直線OM的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半這條直線被后人稱之為三角形的歐拉線若的頂點(diǎn),,且的歐拉線的方程為,則頂點(diǎn)C的坐標(biāo)為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】菜農(nóng)定期使用低害殺蟲(chóng)農(nóng)藥對(duì)蔬菜進(jìn)行噴灑,以防止害蟲(chóng)的危害,但蔬菜上市時(shí)蔬菜仍存有少量的殘留農(nóng)藥,食用時(shí)需要用清水清洗干凈,下表是用清水(單位:千克)清洗蔬菜1千克后,蔬菜上殘留的農(nóng)藥(單位:微克)的統(tǒng)計(jì)表:
1 | 2 | 3 | 4 | 5 | |
58 | 54 | 39 | 29 | 10 |
(1)在答題紙的坐標(biāo)系中,描出散點(diǎn)圖,并判斷變量與是正相關(guān)還是負(fù)相關(guān);
(2)若用解析式作為蔬菜農(nóng)藥殘量與用水量的回歸方程,令,計(jì)算平均值與,完成以下表格(填在答題卡中),求出與的回歸方程.(, 保留兩位有效數(shù)字):
1 | 4 | 9 | 16 | 25 | |
58 | 54 | 39 | 29 | 10 | |
(3)對(duì)于某種殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量低于20微克時(shí)對(duì)人體無(wú)害,為了放心食用該蔬菜,請(qǐng)?jiān)u估需要用多少千克的清水清洗一千克蔬菜?(精確到0.1,參考數(shù)據(jù))(附:對(duì)于一組數(shù)據(jù), ,……, ,其回歸直線的斜率和截距的最小二乘法估計(jì)分別為: , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x2-x+m,且f(log2a)=m,log2f(a)=2,(a≠1).
(1)求a,m的值;
(2)求f(log2x)的最小值及對(duì)應(yīng)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的一個(gè)上界.已知函數(shù), .
(1)若函數(shù)為奇函數(shù),求實(shí)數(shù)的值;
(2)在(1)的條件下,求函數(shù)在區(qū)間上的所有上界構(gòu)成的集合;
(3)若函數(shù)在上是以3為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】片森林原來(lái)面積為a,計(jì)劃每年砍伐森林面積是上一年末森林面積的p%,當(dāng)砍伐到原來(lái)面積的一半時(shí),所用時(shí)間是10年,已知到今年末為止,森林剩余面積為原來(lái)面積的,為保護(hù)生態(tài)環(huán)境,森林面積至少要保留原來(lái)面積的.
(1)求每年砍伐面積的百分比p%;
(2)到今年為止,該森林已砍伐了多少年?
(3)今年以后至多還能再砍伐多少年?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com