已知數(shù)列的前項(xiàng)和為,常數(shù),且對(duì)一切正整數(shù)都成立。
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),,求證: <4

(1)若時(shí),,若,則
(2),時(shí),,設(shè),結(jié)合錯(cuò)位相減法來(lái)得到比較。

解析試題分析:(Ⅰ)取n=1得,
當(dāng)n》2時(shí),
,所以n》2時(shí),由相減得
,所以數(shù)列是等比數(shù)列,于是
,
綜上可知:若時(shí),,若,則
(Ⅱ)時(shí),,設(shè)

所以,2<4
考點(diǎn):數(shù)列的通項(xiàng)公式與前n項(xiàng)和的關(guān)系
點(diǎn)評(píng):主要是考查了數(shù)列的通項(xiàng)公式求解和錯(cuò)位相減法求和的綜合運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列和公比為的等比數(shù)列滿足:,,
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和是二項(xiàng)式展開式中含奇次冪的系數(shù)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且
(1)求數(shù)列的通項(xiàng)公式;
(2)令,數(shù)列的前項(xiàng)和為,若不等式 對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列,其前項(xiàng)和,數(shù)列 滿足
( 1 )求數(shù)列、的通項(xiàng)公式;
( 2 )設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列{Cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(1,λ),且對(duì)任意x∈R,
都有f(x+1)=f(x)+2.?dāng)?shù)列{an}滿足
(1)當(dāng)x為正整數(shù)時(shí),求f(n)的表達(dá)式;(2)設(shè)λ=3,求a1+a2+a3+…+a2n;
(3)若對(duì)任意n∈N*,總有anan+1<an+1an+2,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的相鄰兩項(xiàng)是關(guān)于的方程的兩根,且.
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和;
(Ⅲ)設(shè)函數(shù)對(duì)任意的都成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知數(shù)列的前n項(xiàng)和為,滿足
(1)求數(shù)列的通項(xiàng)公式
(2)設(shè),求數(shù)列的前n項(xiàng)和。

查看答案和解析>>

同步練習(xí)冊(cè)答案