【題目】下面給出四個(gè)命題的表述: ①直線(3+m)x+4y﹣3+3m=0(m∈R)恒過(guò)定點(diǎn)(﹣3,3);
②線段AB的端點(diǎn)B的坐標(biāo)是(3,4),A在圓x2+y2=4上運(yùn)動(dòng),則線段AB的中點(diǎn)M的軌跡方程 +(y﹣2)2=1
③已知M={(x,y)|y= },N={(x,y)|y=x+b},若M∩N≠,則b∈[﹣ ];
④已知圓C:(x﹣b)2+(y﹣c)2=a2(a>0,b>0,c>0)與x軸相交,與y軸相離,則直線ax+by+c=0與直線x+y+1=0的交點(diǎn)在第二象限.
其中表述正確的是( (填上所有正確結(jié)論對(duì)應(yīng)的序號(hào))

【答案】①②④
【解析】解:①直線(3+m)x+4y﹣3+3m=0(m∈R)得m(x+3)+3x+4y﹣3=0, 由 ,即直線恒過(guò)定點(diǎn)(﹣3,3);故①正確,
②設(shè)AB的中點(diǎn)M(x,y),A(x1 , y1),
又B(3,4),由中點(diǎn)坐標(biāo)公式得:

∵點(diǎn)A在圓x2+y2=4上運(yùn)動(dòng),

即(2x﹣3)2+(2y﹣4)2=4,整理得: +(y﹣2)2=1.
∴線段AB的中點(diǎn)M的軌跡為 +(y﹣2)2=1,故②正確,
③集合M表示圓心為原點(diǎn),半徑為1的上半圓,集合N表示直線y=x+b,如圖所示,
當(dāng)直線y=x+b過(guò)A點(diǎn)時(shí),把A(1,0)代入得:b=﹣1;
當(dāng)直線y=x+b與圓相切,且切點(diǎn)在第二象限時(shí),
圓心到直線的距離d=r,即 =1,即b= (負(fù)值舍去),
則M∩N≠時(shí),實(shí)數(shù)b的范圍是[﹣1, ].故③錯(cuò)誤,
④解:由圓C:(x﹣b)2+(y﹣c)2=a2(a>0),得到圓心坐標(biāo)為(b,c),半徑r=a,
∵圓C與x軸相交,與y軸相離,
∴b>a>0,0<c<a,即b﹣a>0,a﹣c>0,
聯(lián)立兩直線方程得: ,
由②得:x=﹣y﹣1,代入①得:a(﹣y﹣1)+by+c=0,
整理得:(b﹣a)y=a﹣c,
解得:y= ,
∵﹣a>0,a﹣c>0,
>0,即y>0,
∴x=﹣y﹣1<0,
則兩直線的交點(diǎn)在第二象限.故④正確,
所以答案是:①②④
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識(shí),掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A、B、C的坐標(biāo)分別為A(4,0),B(0,4),C(3cosα,3sinα).
(1)若α∈(﹣π,0),且| |=| |,求角α的大;
(2)若 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠的A、B、C三個(gè)不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進(jìn)行檢測(cè).

車間

A

B

C

數(shù)量

50

150

100

(1)求這6件樣品中來(lái)自A、B、C各車間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件進(jìn)行進(jìn)一步檢測(cè),求這2件商品來(lái)自相同車間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一盒中裝有各色球12只,其中5個(gè)紅球,4個(gè)黑球,2個(gè)白球,1個(gè)綠球;從中隨機(jī)取出1球.求:
(1)取出的1球是紅球或黑球的概率;
(2)取出的1球是紅球或黑球或白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,點(diǎn)M是平面A1B1C1D1內(nèi)一點(diǎn),且BM∥平面ACD1 , 則tan∠DMD1的最大值為(

A.
B.1
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,AB=2,C是⊙O上一點(diǎn),且AC=BC,PC與⊙O所在的平面成45°角,E是PC中點(diǎn).F為PB中點(diǎn).
(1)求證:EF∥面ABC;
(2)求證:EF⊥面PAC;
(3)求三棱錐B﹣PAC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖△ABC是等腰三角形,BA=BC,DC⊥平面ABC,AE∥DC,若AC=2且BE⊥AD,則(

A.AB+BC有最大值
B.AB+BC有最小值
C.AE+DC有最大值
D.AE+DC有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在甲、乙兩個(gè)盒子中分別裝有標(biāo)號(hào)為1、2、3、4的四個(gè)球,現(xiàn)從甲、乙兩個(gè)盒子中各取出1個(gè)球,每個(gè)球被取出的可能性相等.
(1)求取出的兩個(gè)球上標(biāo)號(hào)為相同數(shù)字的概率;
(2)求取出的兩個(gè)球上標(biāo)號(hào)之積能被3整除的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD 中,AD⊥平面ABE,AE=FB=BC=2,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE,AC,BD交于G點(diǎn)

(1)求證:AE∥平面BFD
(2)求證:AE⊥平面BCE
(3)求三棱柱C﹣BGF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案