【答案】1;(250

【解析】試題分析:(1)利用輪船每小時(shí)的燃料費(fèi)與輪船的速度成反比且比例系數(shù)為05,其它費(fèi)用為每小時(shí)1250元,可得全程運(yùn)輸成本與速度的函數(shù);

2)根據(jù)導(dǎo)數(shù)確定函數(shù)的單調(diào)性,即可求出當(dāng)速度達(dá)到多少時(shí)可使全程運(yùn)輸成本最。

試題解析: (1)由題意得: ,即:

2)由(1)知, ,解得,(舍去).

當(dāng)時(shí), ,當(dāng)時(shí), ,

因此,函數(shù),在處取得極小值,也是最小值.故為使全程運(yùn)輸成本最小,輪船應(yīng)以海里/小時(shí)的速度行駛.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ax﹣lnx(x∈(0,e]),其中e是自然常數(shù),a∈R.
(Ⅰ)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)是否存在實(shí)數(shù)a,使f(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)

經(jīng)常使用

偶爾或不用

合計(jì)

30歲及以下

70

30

100

30歲以上

60

40

100

合計(jì)

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?

(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.

(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

(ii)從這5人中,再隨機(jī)選出2人贈(zèng)送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)利用“五點(diǎn)法”畫出函數(shù) 內(nèi)的簡(jiǎn)圖

x

x+

y


(2)若對(duì)任意x∈[0,2π],都有f(x)﹣3<m<f(x)+3恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是奇函數(shù),f(x)=lg(10x+1)+bx是偶函數(shù).
(1)求a和b的值.
(2)說明函數(shù)g(x)的單調(diào)性;若對(duì)任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求實(shí)數(shù)k的取值范圍.
(3)設(shè) ,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為.過原點(diǎn)的直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓上的點(diǎn),若, ,且的周長(zhǎng)為.

(1)求橢圓的方程;

(2) 設(shè)橢圓在點(diǎn)處的切線記為直線,點(diǎn)上的射影分別為,過的垂線交軸于點(diǎn),試問是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:sin230°+sin290°+sin2150°= ;
sin25°+sin265°+sin2125°= ;
sin212°+sin272°+sin2132°=
通過觀察上述兩等式的規(guī)律,請(qǐng)你寫出一般性的命題,并給予的證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…為自然對(duì)數(shù)的底數(shù).
(1)設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=a,an+1= (n∈N*).
(1)求a2 , a3 , a4;
(2)猜測(cè)數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案