(本小題滿分13分)

設(shè)函數(shù)的定義域?yàn)镽,當(dāng)時(shí),,且對(duì)任意的實(shí)數(shù),,有

(1)求;  (2)試判斷函數(shù)上是否存在最大值,若存在,求出該最大值,若不存在說(shuō)明理由;

(3)設(shè)數(shù)列各項(xiàng)都是正數(shù),且滿足

,又設(shè)

,試比較的大小.

 

 

【答案】

解:(1)令………1分    

…………………………2分

 (2) 又∵ ∴當(dāng)=1得

故對(duì)于…………………………3分

設(shè)由已知得 ∴……5分

∴函數(shù)在R上是單調(diào)遞增函數(shù).

∴函數(shù)上存在最大值,f(x)max=f(0)=1…………………………6分

(3) 由

∵函數(shù)是R上單調(diào)函數(shù).  ∴……………………8分

∵數(shù)列各項(xiàng)都是正數(shù),∴

∴數(shù)列是首項(xiàng),公差為1的等差數(shù)列,且.……………10分

∵當(dāng)n=1時(shí),    ∴ 

當(dāng)時(shí),

     ∴.……………………………………………………13分

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫(huà)出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來(lái)源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案