已知函數(shù)f(x),g(x)分別由下表給出
x123
f(x)231
x123
g(x)321
(1)則當(dāng)g[f(x)]=2時,x=
 

(2)則f[g(2)]=
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意知,當(dāng)g[f(x)]=2時,f(x)=2,由此能求出x.
(2)由題意知g(2)=2,從而f[g(2)]=f(2)=3.
解答: 解:(1)由題意知,
當(dāng)g[f(x)]=2時,f(x)=2,
解得x=1.
(2)由題意知g(2)=2,
∴f[g(2)]=f(2)=3.
故答案為:1,3.
點(diǎn)評:本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1,a2,a3∈R+,且a1+a2+a3=m.求證:
(1)a12+a22+a32
m2
3
;      
(2)
1
a1
+
1
a2
+
1
a3
9
m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2ax+5在區(qū)間(-∞,2]上單調(diào)遞減,且對任意的x1,x2∈[1,a+1],都有|f(x1)-f(x2)|≤4,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=
1
2
,an+1=an+
1
4n2-1
(n∈N*),則a7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明不等式
a+1
-
a
a-1
-
a-2
(a≥2)所用的最合適的方法是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一批種子的發(fā)芽率為0.9,出芽后的幼苗成活率為0.8,在這批種子中,隨機(jī)抽取一粒,則這粒種子能成長為幼苗的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若0<a<1,x>y>1,將ax,xa,ay,ya從小到大排列為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若z=-1+(
1+i
1-i
)2011
,則z=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)z=
5
i-2
對應(yīng)的點(diǎn)Z在第
 
象限.

查看答案和解析>>

同步練習(xí)冊答案