分析 (Ⅰ)求出圓的半徑,即可求圓C的方程;
(Ⅱ)已知點(diǎn)P是圓C上的動(dòng)點(diǎn),求出圓心到直線l的距離,即可求點(diǎn)P到直線$\sqrt{3}$x+y-6=0的距離的最小值;
(Ⅲ)利用C點(diǎn)到直線l的距離等于圓的半徑2,求出b,k的關(guān)系,表示出三角形的面積,利用基本不等式,即可求△ABC的面積最小時(shí)直線L的方程.
解答 解:(Ⅰ)圓C的半徑為$|CM|=\sqrt{1+3}=2$,…(1分)
所以圓C的方程為x2+y2=4…(2分)
(Ⅱ)圓心到直線l的距離為$d=\frac{|-6|}{{\sqrt{3+1}}}=3$,…(4分)
所以P到直線l:x+y-4=0的距離的最小值為1 …(6分)
(Ⅲ)設(shè)直線l的方程為:y=kx+b,因?yàn)閘與x,y軸的正半軸分別相交于A,B兩點(diǎn),
則k<0,b>0,且$A(-\frac{k}\;,\;0)\;,\;\;B(0\;,\;b)$,…(7分)
又l與圓C相切,則C點(diǎn)到直線l的距離等于圓的半徑2,
即:$\frac{|b|}{{\sqrt{{k^2}+1}}}=2⇒{b^2}=4{k^2}+4$,①,…(8分)
而${S_{△ABC}}=\frac{1}{2}(-\frac{k})b=\frac{{-{b^2}}}{2k}$②…(9分)
將①代入②得${S_{△ABC}}=\frac{{-(4{k^2}+4)}}{2k}=2(-k+\frac{1}{-k})≥4\sqrt{(-k)•\frac{1}{-k}}=4$,當(dāng)且僅當(dāng)k=-1時(shí)取等號(hào),所以當(dāng)k=-1時(shí),△ABC的面積最小,此時(shí)${b^2}=4{k^2}+4=8,\;\;\;\;b=2\sqrt{2}$,…(11分)
直線l的方程為:$y=-x+2\sqrt{2}$…(12分)
點(diǎn)評(píng) 本題考查圓的方程,考查直線與圓的位置關(guān)系,考查三角形面積的計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
X | 0 | 1 | 2 | 3 |
P | $\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{3}{8}$ | a |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com