精英家教網 > 高中數學 > 題目詳情
已知x,y滿足
x+y-1≤0
x-y+1≥0
y≥-1
,且z=2x+y,則z的值域是( 。
A、[-5,1]
B、(1,3)
C、[-5,3]
D、(-5,3)
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用目標函數的幾何意義,利用數形結合確定z的值域.
解答: 解:作出不等式組對應的平面區(qū)域如圖:(陰影部分ABC).
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當直線y=-2x+z經過點B時,直線y=-2x+z的截距最大,
此時z最大.
y=-1
x+y-1=0
,解得
x=2
y=-1
,即B(2,-1)
將B(2,-1)的坐標代入目標函數z=2x+y,
得z=2×2-1=3.即z=2x+y的最大值為3.
當直線y=-2x+z經過點A時,直線y=-2x+z的截距最小,
此時z最。
y=-1
x-y+1=0
,解得
y=-1
x=-2
,即A(-2,-1),則z=2x+y=-4-1=-5,
故-5≤x≤3,
即z的值域是[-5,3]
故選:C.
點評:本題主要考查線性規(guī)劃的應用,結合目標函數的幾何意義,利用數形結合的數學思想是解決此類問題的基本方法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于頂點在原點的拋物線,給出下列條件:
①焦點在y軸上;
②焦點在x軸上;
③拋物線上橫坐標為1的點到焦點的距離等于6;
④拋物線的通徑長為5;
⑤由原點向過焦點的某條直線作垂線,垂足坐標為(1,2);
其中適合拋物線y2=20x的條件是(填寫所有適合條件的序號)
 

查看答案和解析>>

科目:高中數學 來源: 題型:

從編號為1,2,3,…,10,11的11個球中,取出5個球,使這5個球的編號之和為奇數,其取法總數為( 。
A、2640B、462
C、328D、236

查看答案和解析>>

科目:高中數學 來源: 題型:

等比數列{an}前n項和Sn中,S3=-7,S6=-63,那么S9的值是( 。
A、-511B、511
C、-1023D、1023

查看答案和解析>>

科目:高中數學 來源: 題型:

從1=12,2+3+4=32,3+4+5+6+7=52 中可得到第n個式子的規(guī)律是( 。
A、1+2+3+???+n=
n(n+1)
2
B、n+(n+1)+(n+2)+???+3n=n(2n-1)
C、n+(n+1)+(n+2)+???+(2n+2)=(n-1)2+1
D、n+(n+1)+(n+2)+???+(3n-2)=(2n-1)2

查看答案和解析>>

科目:高中數學 來源: 題型:

點P從(-1,0)出發(fā),沿單位圓x2+y2=1順時針方向運動
π
3
弧長到達Q點,則Q點坐標為( 。
A、(-
1
2
3
2
B、(-
3
2
,-
1
2
C、(-
1
2
,-
3
2
D、(-
3
2
,
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

將正整數排成如表,則在表中數字2014出現在( 。
A、第45行第78列
B、第44行第78列
C、第44行第77列
D、第45行第77列

查看答案和解析>>

科目:高中數學 來源: 題型:

在R上定義運算|
 
a
b
 
c
d
|=ad-bc,若|
 
x
-x
 
3
x
|<|
 
2
1
 
0
2
|成立,則x的取值范圍是( 。
A、(-4,1)
B、(-1,4)
C、(-∞,-4)∪(1,+∞)
D、(-∞,-1)∪+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

設二次函數f(x)=ax2+bx+c(a≠0),且方程f(x)=x有兩相等的實數根1.
(1)若f(0)=2,求f(x)的解析式;
(2)求f(x)在[-2,2]的最小值(用a表示);
(3)當a>0時,若g(x)=f(x)+|x-a|+(2a-1)x,求g(x)在[1,2]上的最小值.

查看答案和解析>>

同步練習冊答案