已知平面和直線,給出條件:
①;②;③;④;⑤.
(理)(i)當(dāng)滿足條件 時(shí),有;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)如圖,四棱錐中,底面是邊長為4的正方形,是與的交點(diǎn),平面,是側(cè)棱的中點(diǎn),異面直線和所成角的大小是60.
(Ⅰ)求證:直線平面;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,棱長為a的正方體ABCD-A1B1C1D1中,E、F、G分別為A1D1、A1B1、BC的中點(diǎn),
(1)求證:GC1//面AEF
(2)求:直線GC1到面AEF的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖所示,正方形和矩形所在平面相互垂直,是的中點(diǎn).
(1)求證:;
(2)若直線與平面成45o角,求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,已知三棱柱的側(cè)棱與底面垂直,,,,分別是,的中點(diǎn),點(diǎn)在直線上,且;
(1)證明:無論取何值,總有;
(2)當(dāng)取何值時(shí),直線與平面所成的角最大?并求該角取最大值時(shí)的正切值;
(3)是否存在點(diǎn),使得平面與平面所成的二面角為30º,若存在,試確定點(diǎn)的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知梯形ABCD中,AD∥BC,∠ABC =∠BAD,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,
使平面AEFD⊥平面EBCF (如圖).
(1)當(dāng)時(shí),求證:BD⊥EG ;
(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為,求的最大值;
(3)當(dāng)取得最大值時(shí),求二面角D-BF-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如右圖,在四棱錐中,底面為平行四邊形,,,為中點(diǎn),平面, ,為中點(diǎn).
(1)證明://平面;
(2)證明:平面;
(3)求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
六棱臺的上、下底面均是正六邊形,邊長分別是8 cm和18 cm,側(cè)面是全等的等腰梯形,側(cè)棱長為13 cm,求它的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知平面,平面,△為等邊三角形,邊長為2a,,為的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)求直線和平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com