若函數(shù)f(x)=ax3+bx2+cx+d滿足f(0)=f(x1)=f(x2)=0 (0<x1<x2),且在[x2,+∞上單調(diào)遞增,則b的取值范圍是_________.

(-∞,0)


解析:

f(0)=f(x1)=f(x2)=0,

f(0)=d=0. f(x)=ax(xx1)(xx2)=ax3a(x1+x2)x2+ax1x2x,

b=-a(x1+x2),又f(x)在[x2,+∞單調(diào)遞增,故a>0.

又知0<x1x,得x1+x2>0,

b=-a(x1+x2)<0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列三個(gè)命題:
①若函數(shù)f(x)=sin(2x+φ)的圖象關(guān)于y軸對稱,則φ=
π
2
;
②若函數(shù)f(x)=
ax-2
x-1
的圖象關(guān)于點(diǎn)(1,1)對稱,則a=1;
③函數(shù)f(x)=|x|+|x-2|的圖象關(guān)于直線x=1對稱.
其中真命題的序號是
 
.(把真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>1,若函數(shù)f(x)=
ax,-1<x≤1
f(x-2)+a-1,1<x≤3
,則f[f(x)]-a=0的根的個(gè)數(shù)最多有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
ax,(x>1)
(4-
a
2
)x+2,(x≤1)
是R上的單調(diào)函數(shù),則實(shí)數(shù)a取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•資陽一模)已知函數(shù)f(x)=2lnx-x2+ax,a∈R.
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的圖象在x=1處的切線的方程;
(2)若函數(shù)f(x)-ax+m=0在[
1e
,e]
上有兩個(gè)不等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
(3)若函數(shù)f(x)的圖象與x軸交于不同的點(diǎn)A(x1,0),B(x2,0),且0<x1<x2,求證:f′(px1+qx2)<0(其中實(shí)數(shù)p,q滿足0<p≤q,p+q=1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
ax(x>1)
(4-
a
2
)x+2(x≤1)
對于R上的任意x1≠x2都有
f(x1)-f(x2)
x1-x2
>0
,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案