【題目】如圖,四棱錐中,底面ABCD為平行四邊形,,,底面ABCD.

證明:;

求平面PAD與平面PBC所成的銳二面角的大。

【答案】(1)見解析(2)

【解析】

(Ⅰ)由余弦定理得 ,從而BD⊥AD,由PD⊥底面ABCD,得BD⊥PD,從而BD⊥平面PAD,由此能證明PA⊥BD.

(Ⅱ)以D為坐標原點,AD的長為單位長,射線DAx軸的正半軸,建立空間直角坐標系D-xyz,利用向量法能法出平面PAD與平面PBC所成的銳二面角的大。

證明:因為,

由余弦定理得,從而,故BD,

底面ABCD,可得,所以平面

如圖,以D為坐標原點,AD的長為單位長,

射線DAx軸的正半軸,建立空間直角坐標系

,,0,,

,0,,

平面PAD的一個法向量為1,,設平面PBC的法向量為y,,

,取,得1,,

,故平面PAD與平面PBC所成的銳二面角的大小為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若曲線在點處的切線與直線垂直,求函數(shù)的極值;

(2)設函數(shù).=時,若區(qū)間[1,e]上存在x0,使得,求實數(shù)的取值范圍.(為自然對數(shù)底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某校高一年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合計

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高一學生有360人,試估計該校高一學生參加社區(qū)服務的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);

(3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務次數(shù)在區(qū)間[20,25)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形中,的中點,,,,,將(圖)沿直線折起,使(如圖.

1)求證:

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是各項均為正數(shù)的等比數(shù)列,.

1)求的通項公式;

2)設,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在極坐標系中,O為極點,點在曲線上,直線l過點且與垂直,垂足為P.

1)當時,求l的極坐標方程;

2)當MC上運動且P在線段OM上時,求P點軌跡的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]

(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

(2)試估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬元)

1

2

3

4

5

銷售收益 (單位:萬元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線性相關關系,請將(2)的結(jié)果填入空白欄,并求出關于的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 ,圓 的圓心在橢圓上,點到橢圓的右焦點的距離為.

(1)求橢圓的標準方程;

(2)過點作互相垂直的兩條直線,且交橢圓兩點,直線交圓, 兩點,且的中點,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過點A0,1)且斜率為k的直線l與圓Cx2+y24x6y+120相交于M、N兩點

1)求實數(shù)k的取值范圍;

2)求證:為定值;

3)若O為坐標原點,問是否存在直線l,使得,若存在,求直線l的方程,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案