【題目】某地某所高中 2019 年的高考考生人數(shù)是 2016 年高考考生人數(shù)的 1.5 倍,為了更好地對比該?忌纳龑W情況,統(tǒng)計了該校 2016 年和 2019年的高考升學情況,得到柱圖:
2016年高考數(shù)據統(tǒng)計 2019年高考數(shù)據統(tǒng)計
則下列結論正確的是( )
A.與2016年相比,2019年一本達線人數(shù)有所增加
B.與2016年相比,2019年二本達線人數(shù)增加了0.5倍
C.與2016年相比,2019年藝體達線人數(shù)相同
D.與2016年相比,2019年不上線的人數(shù)有所增加
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在直角坐標系中,點到拋物線:的準線的距離為.點是上的定點,,是上的兩動點,且線段的中點在直線上.
(1)求曲線的方程及點的坐標;
(2)記,求弦長(用表示);并求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為橢圓上的三個點,為坐標原點.
(1)若所在的直線方程為,求的長;
(2)設為線段上一點,且,當中點恰為點時,判斷的面積是否為常數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】趙爽是我國古代數(shù)學家、天文學家,大約公元222年,趙爽為《周髀算經》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設,若在大正六邊形中隨機取一點,則此點取自小正六邊形的概率為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓:的左、右焦點分別為,,點在橢圓上.
(1)若,點的坐標為,求橢圓的方程;
(2)若點橫坐標為,點為中點,且,求橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念已經深入人心,這將推動新能源汽車產業(yè)的迅速發(fā)展.下表是近幾年我國某地區(qū)新能源乘用車的年銷售量與年份的統(tǒng)計表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
銷量(萬臺) | 8 | 10 | 13 | 25 | 24 |
某機構調查了該地區(qū)30位購車車主的性別與購車種類情況,得到的部分數(shù)據如下表所示:
購置傳統(tǒng)燃油車 | 購置新能源車 | 總計 | |
男性車主 | 6 | 24 | |
女性車主 | 2 | ||
總計 | 30 |
(1)求新能源乘用車的銷量關于年份的線性相關系數(shù),并判斷與是否線性相關;
(2)請將上述列聯(lián)表補充完整,并判斷是否有的把握認為購車車主是否購置新能源乘用車與性別有關;
(3)若以這30名購車車主中購置新能源乘用車的車主性別比例作為該地區(qū)購置新能源乘用車的車主性別比例,從該地區(qū)購置新能源乘用車的車主中隨機選取50人,記選到女性車主的人數(shù)為X,求X的數(shù)學期望與方差.
參考公式:,,其中.,若,則可判斷與線性相關.
附表:
0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學著作《孫子算經》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構成一個數(shù)列,則該數(shù)列各項之和為( )
A.56383B.57171C.59189D.61242
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)為了發(fā)展旅游行業(yè),決定加強宣傳,據統(tǒng)計,廣告支出費與旅游收入(單位:萬元)之間有如下表對應數(shù)據:
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)求旅游收入對廣告支出費的線性回歸方程,若廣告支出費萬元,預測旅游收入;
(2)在已有的五組數(shù)據中任意抽取兩組,根據(1)中的線性回歸方程,求至少有一組數(shù)據,其預測值與實際值之差的絕對值不超過的概率.(參考公式:,,其中為樣本平均值,參考數(shù)據:,,)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com