【題目】某投資公司擬投資開發(fā)某項新產(chǎn)品,市場評估能獲得10~1 000萬元的投資收益.現(xiàn)公司準(zhǔn)備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不低于1萬元,同時不超過投資收益的20%.
(1) 設(shè)獎勵方案的函數(shù)模型為f(x),試用數(shù)學(xué)語言表述公司對獎勵方案的函數(shù)模型f(x)的基本要求;
(2) 公司能不能用函數(shù)f(x)=+2作為預(yù)設(shè)的獎勵方案的模型函數(shù)?
【答案】(1)見解析(2)不符合
【解析】試題分析:(1)利用函數(shù)單調(diào)性、不等式恒成立刻畫方案中三個要求即可(2)逐一驗證函數(shù)f(x)=+2是否滿足三個條件,顯然滿足① f(x)是增函數(shù);② f(x)≥1恒成立;根據(jù)函數(shù)最值得f(x)≤不 恒成立.
試題解析:解:(1) 由題意知,公司對獎勵方案的函數(shù)模型f(x)的基本要求是:
當(dāng)x∈[10,1 000]時,① f(x)是增函數(shù);② f(x)≥1恒成立;③ f(x)≤恒成立.
(2) 對于函數(shù)模型f(x)=+2;當(dāng)x∈[10,1 000]時,f(x)是增函數(shù),則f(x)≥1顯然恒成立;
而若使函數(shù)f(x)=+2≤在[10,1 000]上恒成立,整理即29x≥300恒成立,而(29x)min=290,∴ f(x)≤不恒成立.
故該函數(shù)模型不符合公司要求.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中不正確命題的個數(shù)是( )
①過空間任意一點有且僅有一個平面與已知平面垂直
②過空間任意一條直線有且僅有一個平面與已知平面垂直
③過空間任意一點有且僅有一個平面與已知的兩條異面直線平行
④過空間任意一點有且僅有一條直線與已知平面垂直
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】3名志愿者在10月1號至10月5號期間參加社區(qū)服務(wù)工作.
(1)若每名志愿者在這5天中任選一天參加社區(qū)服務(wù)工作,且各志愿者的選擇互不影響,求3名志愿者恰好連續(xù)3天參加社區(qū)服務(wù)工作的概率;
(2)若每名志愿者在這5天中任選兩天參加社區(qū)服務(wù)工作,且各志愿者的選擇互不影響,記表示這3名志愿者在10月1號參加社區(qū)服務(wù)工作的人數(shù),求隨機變量的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)證明: ;
(2)根據(jù)(1)證明: .
(B)已知函數(shù), .
(1)用分析法證明: ;
(2)證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
(1) 判別函數(shù)f(x)的奇偶性;
(2) 判斷函數(shù)f(x)的單調(diào)性,并根據(jù)函數(shù)單調(diào)性的定義證明你的判斷正確;
(3) 求關(guān)于x的不等式f(1-x2)+f(2x+2)<0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為是上一點.
(1)求橢圓的方程;
(2)設(shè)是分別關(guān)于兩坐標(biāo)軸及坐標(biāo)原點的對稱點,平行于的直線交于異于的兩點.點關(guān)于原點的對稱點為.證明:直線與軸圍成的三角形是等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com