甲乙丙三人獨立地破譯一份密碼,他們每人譯出此密碼的概率為0.25,假定隨機變量x表示譯出此密碼的人數(shù),求E(x),D(x).
考點:離散型隨機變量的期望與方差
專題:概率與統(tǒng)計
分析:由已知條件推導(dǎo)出X~B(3,0.25),由此能求出結(jié)果.
解答: 解:由題意知X~B(3,0.25),
∴E(X)=3×0.25=0.75,
D(X)=3×0.25×(1-0.25)=0.5625.
點評:本題考查離散型隨機變量的期望和方差的求法,是基礎(chǔ)題,解題的關(guān)鍵是判斷出X~B(3,0.25).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果直線l⊥平面α,①若直線m⊥l,則m∥α;②若m⊥α,則m∥l;③若m∥α,則m⊥l;④若m∥l,則m⊥α,上述判斷正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①若A、B、C、D是空間任意四點,則有
AB
+
BC
+
CD
+
DA
=0;
②|
a
|-|
b
|=|
a
+
b
|是
a
b
共線的充要條件;
③若
a
、
b
共線,則
a
b
所在直線平行;
④對空間任意一點P與不共線的三點A、B、C,若
OP
=x
OA
+y
OB
+z
OC
(x,y,z∈R),則P、A、B、C四點共面.其中不正確命題的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A、
3
B、π
C、
3
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在一個120°的二面角的棱上有兩個點A、B,AC、BD分別是在這個二面角的兩個半平面內(nèi)且垂直于AB的線段,又AB=4cm,AC=6cm,BD=8cm,則CD的長為( 。
A、2
17
cm
B、
154
cm
C、2
41
cm
D、4
10
cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:∵tan2α=
2tanα
1-tan2α
,∴cot2α=
1-tan2α
2tanα

∴2cot2α=cotα-tanα即cotα=tanα+2cot2α
(1)請利用已知的結(jié)論證明:cotα=tanα+2tan2α+4cot4α
(2)請你把(2)的結(jié)論推廣到更一般的情形,使之成為推廣后的特例,并加以證明;
(3)化簡tan5°+2tan10°+4tan20°+8tan50°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的兩頂點坐標(biāo)A(-1,0),B(1,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=1(從圓外一點到圓的兩條切線段長相等),動點C的軌跡為曲線M.
(I)求曲線M的方程;
(Ⅱ)設(shè)直線BC與曲線M的另一交點為D,當(dāng)點A在以線段CD為直徑的圓上時,求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點M到點F(0,1)的距離等于點M到直線y=-1的距離,點M的軌跡為C.
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)P為直線l:x-y-2=0上的點,過點P做曲線C的兩條切線PA,PB,當(dāng)點P(x0,y0)為直線l上的定點時,求直線AB的方程;
(Ⅲ)當(dāng)點P在直線l上移動時,求|AF|•|BF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E是AB的中點
(Ⅰ)在B1C上是否存在點P,使PB∥平面B1ED,若存在,求出點P的位置,若不存在,請說明理由;
(Ⅱ)求二面角D-B1E-C的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案