【題目】已知函數(shù)f(x)=2.5cos(ωx+φ)(ω>0,|φ|< )的部分圖象如圖所示,M、N兩點(diǎn)之間的距離為13,且f(3)=0,若將函數(shù)f(x)的圖象向右平移t(t>0)個(gè)單位長(zhǎng)度后所得函數(shù)的圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,則t的最小值為(
A.7
B.8
C.9
D.10

【答案】D
【解析】解:∵M(jìn)、N兩點(diǎn)之間的距離為13,可得 =2×13, ∴解得:ω= ,
∵f(3)=0,可得:2.5cos( ×3+φ)=0,
∴解得: ×3+φ=kπ+ ,k∈Z,可得:φ=kπ+ ,k∈Z,
由于|φ|< ,解得:φ= ,
∴將函數(shù)f(x)的圖象向右平移t(t>0)個(gè)單位長(zhǎng)度后所得函數(shù)的圖象對(duì)應(yīng)的函數(shù)解析式為:y=2.5cos[ ×(x﹣t)+ ]=2.5cos( x﹣ t+ ),
∵函數(shù)的圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,可得:﹣ t+ =kπ+ ,k∈Z,解得:t=﹣13k﹣3,k∈Z.
∴當(dāng)k=﹣1時(shí),正數(shù)t的最小值為10.
故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=|sinx|+|cosx|的最小正周期為m,函數(shù)g(x)=sin3x﹣sinx的最大值為n,則mn=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx﹣ax(a∈R).
(1)若直線y=3x﹣1是函數(shù)f(x)圖象的一條切線,求實(shí)數(shù)a的值;
(2)若函數(shù)f(x)在[1,e2]上的最大值為1﹣ae(e為自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)a的值;
(3)若關(guān)于x的方程ln(2x2﹣x﹣3t)+x2﹣x﹣t=ln(x﹣t)有且僅有唯一的實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,已知A= ,cosB= . (Ⅰ)求cosC的值;
(Ⅱ)若BC=2 ,D為AB的中點(diǎn),求CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,圓C1和C2的參數(shù)方程分別是 (φ為參數(shù))和 (φ為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求圓C1和C2的極坐標(biāo)方程;
(2)射線OM:θ=a與圓C1的交點(diǎn)為O、P,與圓C2的交點(diǎn)為O、Q,求|OP||OQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代號(hào)t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y關(guān)于t的線性回歸方程;

(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2015年農(nóng)村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)H(0,﹣8),點(diǎn)P在x軸上,動(dòng)點(diǎn)F滿足PF⊥PH,且PF與y軸交于點(diǎn)Q,Q為線段PF的中點(diǎn).
(1)求動(dòng)點(diǎn)F的軌跡E的方程;
(2)點(diǎn)D是直線l:x﹣y﹣2=0上任意一點(diǎn),過(guò)點(diǎn)D作E的兩條切線,切點(diǎn)分別為A、B,取線段AB的中點(diǎn),連接DM交曲線E于點(diǎn)N,求證:直線AB過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.若曲線C的極坐標(biāo)方程為ρcos2θ﹣4sinθ=0,P點(diǎn)的極坐標(biāo)為 ,在平面直角坐標(biāo)系中,直線l經(jīng)過(guò)點(diǎn)P,斜率為
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: 的左右焦點(diǎn)與其短軸的一個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)D 在橢圓C上,直線l:y=kx+m與橢圓C相交于A、P兩點(diǎn),與x軸、y軸分別相交于點(diǎn)N和M,且PM=MN,點(diǎn)Q是點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn),QM的延長(zhǎng)線交橢圓于點(diǎn)B,過(guò)點(diǎn)A、B分別作x軸的垂涎,垂足分別為A1、B1
(1)求橢圓C的方程;
(2)是否存在直線l,使得點(diǎn)N平分線段A1B1?若存在,求求出直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案