5.函數(shù)f(x)=$\sqrt{3}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{6}$個(gè)單位后關(guān)于原點(diǎn)對稱,則φ等于( 。
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{3}$

分析 函數(shù)f(x)=$\sqrt{3}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{6}$個(gè)單位后的解析式g(x),由于平移后的圖象關(guān)于原點(diǎn)對稱,故g(0)=0,解得答案.

解答 解:函數(shù)f(x)=$\sqrt{3}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{6}$個(gè)單位后,
得到g(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$+φ)(|φ|<$\frac{π}{2}$)的圖象,
由于平移后的圖象關(guān)于原點(diǎn)對稱,
故g(0)=$\sqrt{3}$sin($\frac{π}{3}$+φ)=0,
由|φ|<$\frac{π}{2}$得:
φ=-$\frac{π}{3}$,
故選:D

點(diǎn)評 本題考查的知識(shí)點(diǎn)是函數(shù)圖象的平移變換,三角函數(shù)的對稱性,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)f(x)=$\left\{\begin{array}{l}{{k}^{2}x+{a}^{2}-k(x≥0)}\\{{x}^{2}+({a}^{2}+4a)x+(2-a)^{2}(x<0)}\end{array}\right.$,其中a∈R,若對任意的非零實(shí)數(shù)x1,存在唯一的非零實(shí)數(shù)x2(x1≠x2),使得f(x2)=f(x1)成立,則k的取值范圍為( 。
A.[-20,-4]B.[-30,-9]C.[-4,0]D.[-9,-4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若R上的可導(dǎo)函數(shù)f(x)滿足f(x)=x2-xf'(1)+1,則f'(0)=( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.市場上有一種新型的強(qiáng)力洗衣粉,特點(diǎn)是去污速度快,已知每投放a(1≤a≤4且a∈R)個(gè)單位的洗衣粉液在一定量水的洗衣機(jī)中,它在水中釋放的濃度y(克/升)隨著時(shí)間x(分鐘)變化的函數(shù)關(guān)系式近似為y=af(x),其中f(x)=$\left\{\begin{array}{l}\frac{16}{8-x}-1,0≤x≤4\\ 5-\frac{1}{2}x,4<x≤10\end{array}$,若多次投放,則某一時(shí)刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時(shí)刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中洗衣液的濃度不低于4(克/升)時(shí),它才能起有效去污的作用.
(1)若只投放一次4個(gè)單位的洗衣液,則有效去污時(shí)間可能達(dá)幾分鐘?
(2)若先投放2個(gè)單位的洗衣液,6分鐘后投放a個(gè)單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求a的最小值(精確到0.1,參考數(shù)據(jù):$\sqrt{2}$取1.4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知x>0,y>0且x+y=xy,則x+y的取值范圍是( 。
A.(0,1]B.[2,+∞)C.(0,4]D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\overrightarrow m•\overrightarrow n$,其中$\overrightarrow m=(sinωx+cosωx,\sqrt{3}cosωx)$,$\overrightarrow n=(cosωx-sinωx,2sinωx)$,其中ω>0,若f(x)相鄰兩對稱軸間的距離為$\frac{π}{2}$.
(Ⅰ) 求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為角A、B、C的對邊,a=$\sqrt{3}$,b+c=3,f(A)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=x-$\frac{1}{x}$的圖象關(guān)于( 。
A.y軸對稱B.直線y=x對稱C.坐標(biāo)原點(diǎn)對稱D.直線y=-x對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.過兩直線l1:2x-y+7=0和l2:y=1-x的交點(diǎn)和原點(diǎn)的直線方程為( 。
A.3x+2y=0B.3x-2y=0C.2x+3y=0D.2x-3y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若$sin({x+\frac{π}{6}})=\frac{1}{3}$,則$tan({2x+\frac{π}{3}})$等于(  )
A.$\frac{7}{9}$B.$±\frac{7}{9}$C.$\frac{{4\sqrt{2}}}{7}$D.$±\frac{{4\sqrt{2}}}{7}$

查看答案和解析>>

同步練習(xí)冊答案