9、某單位擬安排6位員工在今年5月1日至3日(勞動(dòng)節(jié)假期)值班,每天安排2人,每人值班1天.若6位員工中的甲不值1日,乙不值3日,則不同的安排方法共有
42
種.
分析:根據(jù)題意,不同的安排方法的數(shù)目等于所有排法減去甲值14日或乙值16日的排法數(shù),再加上甲值14日且乙值16日的排法,進(jìn)而計(jì)算可得答案.
解答:解:根據(jù)題意,不同的安排方法的數(shù)目等于所有排法減去甲值14日或乙值16日的排法數(shù),
再加上甲值14日且乙值16日的排法,
即C62C42-2×C51C42+4×3=42
故答案為:42
點(diǎn)評(píng):本題考查組合數(shù)公式的運(yùn)用,注意組合與排列的不同,本題中要注意各種排法間的關(guān)系,避免重復(fù)和遺漏.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、某單位擬安排6位員工在今年6月14日至16日(端午節(jié)假期)值班,每天安排2人,每人值班1天.若6位員工中的甲不值14日,乙不值16日,則不同的安排方法共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某單位擬安排6位員工在今年6月14日至16日(端午節(jié)假期)值班,每天安排2人,每人值班1天 . 若6位員工中的甲不值14日,乙不值16日,則不同的安排方法共有[來(lái)源:Z。xx(A)30種                                    (B)36種

(C)42種                                    (D)48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某單位擬安排6位員工在今年6月14日至16日(端午節(jié)假期)值班,每天安排2人,每人值班1天 . 若6位員工中的甲不值14日,乙不值16日,則不同的安排方法共有[來(lái)源:Z。xx(A)30種                                    (B)36種

(C)42種                                    (D)48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題(重慶卷)解析版(文) 題型:選擇題

 某單位擬安排6位員工在今年6月14日至16日(端午節(jié)假期)值班,每天安排2人,每人值班1天 . 若6位員工中的甲不值14日,乙不值16日,則不同的安排方法共有

    (A)30種  (B)36種   (C)42種   (D)48種

 

查看答案和解析>>

同步練習(xí)冊(cè)答案