函數(shù)f(x)=x3-ax在(-∞,1]上遞增,則a的范圍是( 。
A、a>3B、a≥3
C、a<3D、a≤3
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:先求出函數(shù)的導(dǎo)數(shù),由題意得不等式,解出即可.
解答: 解:∵f′(x)=3x2-a,
∴f′(1)=3-a≥0,
解得:a≤3,
故選:D.
點評:本題考察了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
lnx
x
在點(x0,f(x0))處的切線平行于x軸,則f(x0)等于( 。
A、-
1
e
B、
1
e
C、
1
e2
D、e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在獨立性檢驗中,若隨機變量k2≥6.635,則( 。
A、x與y有關(guān)系,犯錯的概率不超過1%
B、x與y有關(guān)系,犯錯的概率超過1%
C、x與y沒有關(guān)系,犯錯的概率不超過1%
D、x與y沒有關(guān)系,犯錯的概率超過1%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義兩個平面向量的一種新運算
a
?
b
=|
a
|•|
b
|sin<
a
b
>,(其中<
a
,
b
>表示
a
,
b
的夾角),則對于兩個平面向量
a
,
b
,下列結(jié)論不一定成立的是( 。
A、
a
?
b
=
b
?
a
B、(
a
?
b
2+(
a
b
2=|
a
|2•|
b
|2
C、λ(
a
?
b
)=(λ
a
)?
b
D、若
a
?
b
=0,則
a
b
平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓M:x2+y2=1與圓N:x2+(y-2)2=1的圓心距|MN|為( 。
A、1
B、
2
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2-x+c(x∈R),下列結(jié)論錯誤的是( 。
A、函數(shù)f(x)一定存在極大值和極小值
B、若函數(shù)f(x)在(-∞,x1),(x2,+∞)上是增函數(shù),則x2-x1
2
3
3
C、函數(shù)f(x)的圖象是中心對稱圖形
D、函數(shù)f(x)一定存在三個零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P和Q是兩個集合,定義集合P-Q={x|x∈P且x∉Q},如果P={x|x2-2x<0},Q={x|1≤x<3},那么P-Q=( 。
A、{x|0<x<1}
B、{x|0<x≤1}
C、{x|1≤x<2}
D、{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC三個頂點是A(-1,4),B(-2,-1),C(2,3).
(1)求BC邊中線AD所在直線方程;
(2)求AC邊上的垂直平分線的直線方程;
(3)求點BC邊上高的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間四邊形ABCD中,E、F分別為對角線BD、AC中點,若BC=AD=2EF,求直線EF與AD所成的角.

查看答案和解析>>

同步練習(xí)冊答案