若
=(1,2),
=(2,k
2-5),
∥,則k=
.
考點:平面向量共線(平行)的坐標(biāo)表示
專題:平面向量及應(yīng)用
分析:根據(jù)兩向量平行時的坐標(biāo)運算公式,即可求出答案.
解答:
解:∵
=(1,2),
=(2,k
2-5),且
∥,
∴1×(k
2-5)-2×2=0,
即k
2=9;
解得k=±3.
故答案為:±3.
點評:本題考查了平面向量的坐標(biāo)運算問題,也考查了向量平行的應(yīng)用問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
某幾何體三視圖如圖所示,其中正視圖和側(cè)視圖都是等腰梯形,且上底長為2,下底長為4,腰長為
,則它的體積與表面積之比是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知全集U={x|x-2≥0或x-1≤0},A={x|x2-4x+3>0},B={x|x≤1或x>2},求A∩B,A∪B,(∁UA)∩(∁UB),(∁UA)∪(∁UB).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)數(shù)列{an}是等差數(shù)列,首項為a1,公差為d,前n項和為Sn,若數(shù)列{an}中任意不同兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列為“F數(shù)列”.
(1)若a1=4,d=2,判斷該數(shù)列是否為“F數(shù)列”.
(2)若a1,d∈N,是否存在這樣的“F數(shù)列”,使S10≤70?若存在,求出所有滿足條件的數(shù)列的通項公式;若不存在,請說明理由.
(3)試問:數(shù)列{an}為“F數(shù)列”的充要條件是什么?給出你的結(jié)論并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
若向量
=(cosα,sinα),
=(cosβ,sinβ),則
與
一定滿足( 。
A、與的夾角為α-β |
B、(+)⊥(-) |
C、∥ |
D、⊥ |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=x2-4x+a+3,g(x)=mx+5-2m
(1)當(dāng)a=-3,m=0時,求方程f(x)-g(x)=0的解;
(2)若方程f(x)=0在[-1,1]上有實數(shù)根,求實數(shù)a的取值范圍;
(3)當(dāng)a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知不等式x+
+a≥9對x∈(1,+∞)恒成立,則正實數(shù)a的最小值為( 。
查看答案和解析>>