【題目】設(shè)△ABC 的內(nèi)角 A,B,C 的對(duì)邊分別是a,b,c,且 a= b cosC+c sinB. (Ⅰ)求角B 的大;
(Ⅱ)若點(diǎn)M 為BC的中點(diǎn),且 AM=AC,求sin∠BAC.
【答案】解:(Ⅰ)∵ 由正弦定理
有
又A=π﹣(B+C)即
∴
∴ ∴
因?yàn)?<B<π∴
(Ⅱ)解法一:設(shè)∠BAC=θ,則 △ABC中,
△ABM中,
∵AM=AC,BC=2BM∴
∴
由平方關(guān)系得
解法二:取CM中點(diǎn)D,連接AD,則AD⊥CM,
設(shè)CD=x,則BD=3x,
由(Ⅰ)知 ,∴
由
由平方關(guān)系得
【解析】(Ⅰ) ,由正弦定理 ,代入化簡(jiǎn)利用和差公式即可得出.(Ⅱ)解法一:設(shè)∠BAC=θ,則 ,在△ABC中與△ABM中,利用正弦定理化簡(jiǎn)即可得出.解法二:取CM中點(diǎn)D,連接AD,則AD⊥CM,設(shè)CD=x,則BD=3x,由(Ⅰ)知 ,可得 ,利用余弦定理與正弦定理即可得出.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用正弦定理的定義,掌握正弦定理:即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P( ,1)和橢圓C: + =1.
(1)設(shè)橢圓的兩個(gè)焦點(diǎn)分別為F1 , F2 , 試求△PF1F2的周長(zhǎng)及橢圓的離心率;
(2)若直線(xiàn)l: x﹣2y+m=0(m≠0)與橢圓C交于兩個(gè)不同的點(diǎn)A,B,設(shè)直線(xiàn)PA與PB的斜率分別為k1 , k2 , 求證:k1+k2=0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程 (φ為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線(xiàn)l的極坐標(biāo)方程是2ρsin(θ+ )=3 ,射線(xiàn)OM:θ= 與圓C的交點(diǎn)為O、P,與直線(xiàn)l的交點(diǎn)為Q,求線(xiàn)段PQ的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣a(x﹣1),g(x)=ex(Ⅰ)若函數(shù)f(x)在區(qū)間(0,9]為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a≠0時(shí),過(guò)原點(diǎn)分別作曲線(xiàn)y=f(x)與y=g(x)的切線(xiàn)l1 , l2 , 已知兩切線(xiàn)的斜率互為倒數(shù),證明: <a< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 的最小正周期為π,將函數(shù)f(x)的圖象向右平移 個(gè)所得圖象對(duì)應(yīng)的函數(shù)為y=g(x),則關(guān)于函數(shù)為y=g(x)的性質(zhì),下列說(shuō)法不正確的是( )
A.g(x)為奇函數(shù)
B.關(guān)于直線(xiàn) 對(duì)稱(chēng)
C.關(guān)于點(diǎn)(π,0)對(duì)稱(chēng)
D.在 上遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)C 的參數(shù)方程為 (α為參數(shù)),以直角坐標(biāo)系原點(diǎn)O 為極點(diǎn),x 軸正半軸為極軸建立極坐標(biāo)系. (Ⅰ)求曲線(xiàn)C 的極坐標(biāo)方程;
(Ⅱ)設(shè)l1:θ= ,l2:θ= ,若l 1、l2與曲線(xiàn)C 相交于異于原點(diǎn)的兩點(diǎn) A、B,求△AOB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=BC=2,過(guò)A1、C1、B三點(diǎn)的平面截去長(zhǎng)方體的一個(gè)角后,得到如圖所示的幾何體ABCD﹣A1C1D1 , 且這個(gè)幾何體的體積為10. (Ⅰ)求棱AA1的長(zhǎng);
(Ⅱ)若A1C1的中點(diǎn)為O1 , 求異面直線(xiàn)BO1與A1D1所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x+3|﹣m,m>0,f(x﹣3)≥0的解集為(﹣∞,﹣2]∪[2,+∞). (Ⅰ)求m的值;
(Ⅱ)若x∈R,使得 成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若集合A={x|2 >1},集合B={x|y=lg },則A∩B=( )
A.{x|﹣5<x<1}
B.{x|﹣2<x<1}
C.{x|﹣2<x<﹣1}
D.{x|﹣5<x<﹣1}
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com