【題目】已知拋物線過(guò)點(diǎn),且焦點(diǎn)為,直線與拋物線相交于兩點(diǎn).

(1)求拋物線的方程,并求其準(zhǔn)線方程;

(2)若直線經(jīng)過(guò)拋物線的焦點(diǎn),當(dāng)線段的長(zhǎng)等于5時(shí),求直線方程.

(3)若,證明直線必過(guò)一定點(diǎn),并求出該定點(diǎn).

【答案】(1);(2);(3)證明見(jiàn)解析,.

【解析】

試題分析:(1)由,得,拋物線的方程為,進(jìn)而求解拋物線的準(zhǔn)線方程;(2)若直線經(jīng)過(guò)焦點(diǎn),則直線的方程為,即可求解,再由,即可求解該直線方程;(3)設(shè)直線的方程為代入,得,設(shè),則,,再利用,求得,即可判定直線過(guò)定點(diǎn).

試題解析:(1)由,得,拋物線的方程為,

其準(zhǔn)線方程為,焦點(diǎn)為.

(2)若直線經(jīng)過(guò)拋物線的焦點(diǎn),則直線的方程為.

,則

所以,得,,直線方程為.

(3)設(shè)直線的方程為代入,得.

設(shè),

,.

,

,直線必過(guò)一定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知圓心坐標(biāo)為的圓軸及直線分別相切于、兩點(diǎn),另一圓與圓外切,且與軸及直線分別相切于、兩點(diǎn)

1求圓和圓的方程;

2過(guò)點(diǎn)作直線的平行線,求直線被圓截得的弦的長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】揚(yáng)州瘦西湖隧道長(zhǎng)米,設(shè)汽車通過(guò)隧道的速度為米/秒.根據(jù)安全和車流的需要,當(dāng)時(shí),相鄰兩車之間的安全距離米;當(dāng)時(shí),相鄰兩車之間的安全距離米(其中是常數(shù)).當(dāng)時(shí),,當(dāng)時(shí),

(1)求的值;

(2)一列汽車組成的車隊(duì)勻速通過(guò)該隧道(第一輛汽車車身長(zhǎng)為米,其余汽車車身長(zhǎng)為米,每輛汽車速度均相同).記從第一輛汽車車頭進(jìn)入隧道,至第汽車車尾離開(kāi)隧道所用的時(shí)間為秒.

表示為的函數(shù);

要使車隊(duì)通過(guò)隧道時(shí)間不超過(guò)秒,求汽車速度的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知α、β是不同的平面,l、mn是不同的直線,P為空間中一點(diǎn).若αβlmα、nβmnP,則點(diǎn)P與直線l的位置關(guān)系用符號(hào)表示為___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=sinπωxcosωx+cos2ωxω0)的最小正周期為π

)求ω的值;

)將函數(shù)y=fx)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到函數(shù)y=gx)的圖象,求函數(shù)y=gx)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1判斷的奇偶性并證明;

2,求的取值范圍.[來(lái)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校某研究性學(xué)習(xí)小組在對(duì)學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽(tīng)課時(shí)間(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)時(shí),圖象是二次函數(shù)圖象的一部分,其中頂點(diǎn),過(guò)點(diǎn);當(dāng)時(shí),圖象是線段,其中.根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時(shí),學(xué)習(xí)效果最佳.

1)試求的函數(shù)關(guān)系式;

2)教師在什么時(shí)段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)已知單調(diào)遞增區(qū)間;

(2)是否存在實(shí)數(shù),使的最小值為0?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的三個(gè)頂點(diǎn),,其外接圓為.

(1)求的面積;

(2)若直線過(guò)點(diǎn),且被截得的弦長(zhǎng)為2,求直線的方程;

(3)對(duì)于線段上的任意一點(diǎn),若在以為圓心的圓上都存在不同的兩點(diǎn),,使得點(diǎn)的線段的中點(diǎn),求的半徑的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案