已知a<b則下列關(guān)系式正確的是(        )

             

 

【答案】

C

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16.(2)解(1)當(dāng)a=1,b=-2時(shí),g(x)=f(x)-2,把f(x)圖象向下平移兩個(gè)單位就可得到g(x)圖象,

這時(shí)函數(shù)g(x)只有兩個(gè)零點(diǎn),所以(1)不對(duì)

(2)若a=-1,-2<b<0,則把函數(shù)f(x)作關(guān)于x軸對(duì)稱圖象,然后向下平移不超過2個(gè)單位就可得到g(x)圖象,這時(shí)g(x)有超過2的零點(diǎn)

(3)當(dāng)a<0時(shí), y=af(x)根據(jù)定義可斷定是奇函數(shù),如果b≠0,把奇函數(shù)y=af(x)圖象再向上(或向下)平移后才是y=g(x)=af(x)+b的圖象,那么肯定不會(huì)再關(guān)于原點(diǎn)對(duì)稱了,肯定不是奇函數(shù);當(dāng)b=0時(shí)才是奇函數(shù),所以(3)不對(duì)。所以正確的只有(2)

一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個(gè)數(shù)是綠球個(gè)數(shù)的兩倍,黃球個(gè)數(shù)是綠球個(gè)數(shù)的一半,現(xiàn)在從該盒中隨機(jī)取出一球,若取出紅球得1分,取出黃球得0分,取出綠球得-1分,試寫出從該盒中取出一球所得分?jǐn)?shù)Y的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(湖南卷解析版) 題型:解答題

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對(duì)一切恒成立,當(dāng)且僅當(dāng).       、

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),

從而,

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個(gè)方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一張矩形紙片,剪下一個(gè)正方形,剩下一個(gè)矩形,稱為第一次操作;在剩下的矩形紙片中再剪下一個(gè)正方形,剩下一個(gè)矩形,稱為第二次操作;…;若在第n次操作后,剩下的矩形為正方形,則稱原矩形為n階奇異矩形.如圖1,矩形ABCD中,若,則稱矩形ABCD為2階奇異矩形.

(1)判斷與操作:

如圖2,矩形ABCD長為5,寬為2,它是奇異矩形嗎?如果是,請(qǐng)寫出它是幾階奇異矩形,并在圖中畫出裁剪線;如果不是,請(qǐng)說明理由.

(2)探究與計(jì)算:

已知矩形ABCD的一邊長為20,另一邊長為< 20),且它是3階奇異矩形,請(qǐng)畫出矩形ABCD及裁剪線的示意圖,并在圖的下方寫出的值.   

(3)歸納與拓展:

已知矩形ABCD兩鄰邊的長分別為b,cc),且它是4階奇異矩形,求bc(直接寫出結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

吉林省吉林一中2011屆高三下學(xué)期沖刺試題一(數(shù)學(xué)理).doc
     

    已知定義域?yàn)镽的函數(shù)f(x)滿足f(-x)= -f(x+4),當(dāng)x>2時(shí),f(x)單調(diào)遞增,如果x1+x2<4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值           (    )

           A.恒小于0        B.恒大于0           C.可能為0           D.可正可負(fù)

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    吉林省吉林一中2011屆高三下學(xué)期沖刺試題一(數(shù)學(xué)理).doc
    <b id="qyzm7"></b>

    <dl id="qyzm7"><s id="qyzm7"><style id="qyzm7"></style></s></dl>

      <li id="qyzm7"></li>
       

      已知定義域?yàn)镽的函數(shù)f(x)滿足f(-x)= -f(x+4),當(dāng)x>2時(shí),f(x)單調(diào)遞增,如果x1+x2<4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值           (    )

             A.恒小于0        B.恒大于0           C.可能為0           D.可正可負(fù)

      查看答案和解析>>

      同步練習(xí)冊(cè)答案