【題目】已知函數(shù)
(1) 求函數(shù)的反函數(shù);
(2)試問:函數(shù)的圖象上是否存在關于坐標原點對稱的點,若存在,求出這些點的坐標;若不存在,說明理由;
(3)若方程的三個實數(shù)根滿足: ,且,求實數(shù)的值.
【答案】(1);(2)存在點關于原點對稱;(3).
【解析】試題分析:(1)根據(jù)分段函數(shù)的反函數(shù)的求法求出函數(shù)的反函數(shù);
(2)設點是函數(shù)圖象上關于原點對稱的點,
則,即, 解方程求出,即可說明:函數(shù)圖象上存在兩點關于原點對稱.
(3) 根據(jù)函數(shù)與函數(shù)的圖象,可得
當時,,且.;
當時, ,于是,.
由,解得.,滿足條件.因此,所求實數(shù).
試題解析:(1)
當時,.
由,得,互換,可得.
當時,.
由,得,互換,可得.
(2) 答:函數(shù)圖象上存在兩點關于原點對稱.
設點是函數(shù)圖象上關于原點對稱的點,
則,即,
解得舍去),且滿足 .
因此,函數(shù)圖象上存在點關于原點對稱.
(3) 考察函數(shù)與函數(shù)的圖象,可得
當時,有,原方程可化為,解得
,且由,得.
當
,解得(當時,).
于是,.
由,得,解得.
因為,故不符合題意,舍去;
,滿足條件.因此,所求實數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,其中為自然對數(shù)的底數(shù).
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)若對任意,不等式恒成立,求實數(shù)的取值范圍;
(Ⅲ)試探究當時,方程的解的個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在航天員進行的一項太空實驗中,要先后實施6個程序,其中程序只能出現(xiàn)在第一步或最后一步,程序實施時必須相鄰,請問實驗順序的編排方法共有 ( )
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為 ,過點且斜率為的直線交曲線于兩點,交圓于兩點(兩點相鄰).
(Ⅰ)若,當時,求的取值范圍;
(Ⅱ)過兩點分別作曲線的切線,兩切線交于點,求與面積之積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓經(jīng)過點,離心率為. 已知過點的直線與橢圓交于兩點.
(1)求橢圓的方程;
(2)試問軸上是否存在定點,使得為定值.若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某船在海面處測得燈塔在北偏東方向,與相距海里,測得燈塔在北偏西方向,與相距海里,船由向正北方向航行到處,測得燈塔在南偏西方向,這時燈塔與相距多少海里?在的什么方向?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為邊長為2的菱形,,,面面,點為棱的中點.
(1)在棱上是否存在一點,使得面,并說明理由;
(2)當二面角的余弦值為時,求直線與平面所成的角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l1:x-2y+3=0與直線l2:2x+3y-8=0的交點為M,
(1)求過點M且到點P(0,4)的距離為2的直線l的方程;
(2)求過點M且與直線l3:x+3y+1=0平行的直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2018·湖北襄陽模擬)已知橢圓C: (a>b>0)的焦點為F1,F(xiàn)2,P是橢圓C上一點,若PF1⊥PF2,|F1F2|=2,△PF1F2的面積為1.
(1)求橢圓C的方程;
(2)如果橢圓C上總存在關于直線y=x+m對稱的兩點A,B,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com