【題目】動(dòng)圓P過點(diǎn),且與直線相切,設(shè)動(dòng)圓圓心的軌跡為曲線.
(1)求曲線的方程;
(2)過點(diǎn)F的直線交曲線C于A,B兩個(gè)不同的點(diǎn),過點(diǎn)A,B分別作曲線C的切線,且二者相交于點(diǎn)M,若直線的斜率為,求直線的方程.
【答案】(1)(2)
【解析】
(1)設(shè)出圓心的坐標(biāo),建立方程,計(jì)算軌跡,即可。(2)設(shè)出直線AB的方程,代入拋物線方程,計(jì)算出直線AM和直線BM的方程,相減,得到M點(diǎn)坐標(biāo),結(jié)合直線的斜率為,計(jì)算k,得到直線AB的方程。
(1)設(shè)點(diǎn),則
平方整理得:
(2)由題意可知直線的斜率一定存在,否則不與曲線有兩個(gè)交點(diǎn)
設(shè)方程為,且設(shè)點(diǎn)
得
則得
由得:,所以
∴直線AM的方程為: ①
直線BM的方程為:②
①-②得:,
又,
解得,,所以
又,所以直線的斜率為,解得
直線的方程為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,國(guó)資委.黨委高度重視扶貧開發(fā)工作,堅(jiān)決貫徹落實(shí)中央扶貧工作重大決策部署,在各個(gè)貧困縣全力推進(jìn)定點(diǎn)扶貧各項(xiàng)工作,取得了積極成效,某貧困縣為了響應(yīng)國(guó)家精準(zhǔn)扶貧的號(hào)召,特地承包了一塊土地,已知土地的使用面積以及相應(yīng)的管理時(shí)間的關(guān)系如下表所示:
土地使用面積(單位:畝) | 1 | 2 | 3 | 4 | 5 |
管理時(shí)間(單位:月) | 8 | 10 | 13 | 25 | 24 |
并調(diào)查了某村300名村民參與管理的意愿,得到的部分?jǐn)?shù)據(jù)如下表所示:
愿意參與管理 | 不愿意參與管理 | |
男性村民 | 150 | 50 |
女性村民 | 50 |
(1)求出相關(guān)系數(shù)的大小,并判斷管理時(shí)間與土地使用面積是否線性相關(guān)?
(2)是否有99.9%的把握認(rèn)為村民的性別與參與管理的意愿具有相關(guān)性?
(3)若以該村的村民的性別與參與管理意愿的情況估計(jì)貧困縣的情況,則從該貧困縣中任取3人,記取到不愿意參與管理的男性村民的人數(shù)為,求的分布列及數(shù)學(xué)期望。
參考公式:
其中。臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn)A,B的距離之比為定值λ(λ≠1)的點(diǎn)的軌跡是圓”.后來,人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡(jiǎn)稱阿氏圓.已知在平面直角坐標(biāo)系xOy中,A(-2,1),B(-2,4),點(diǎn)P是滿足的阿氏圓上的任一點(diǎn),則該阿氏圓的方程為___________________;若點(diǎn)Q為拋物線E:y2=4x上的動(dòng)點(diǎn),Q在直線x=-1上的射影為H,則的最小值為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工科院校對(duì)A、B兩個(gè)專業(yè)的男、女生人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì),得到以下表格:
專業(yè)A | 專業(yè)B | 合計(jì) | |
女生 | 12 | ||
男生 | 46 | 84 | |
合計(jì) | 50 | 100 |
如果認(rèn)為工科院校中“性別”與“專業(yè)”有關(guān),那么犯錯(cuò)誤的概率不會(huì)超過( )
注:
P(x2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
A. 0.005B. 0.01C. 0.025D. 0.05
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級(jí)四位學(xué)生參加了文科綜合知識(shí)競(jìng)賽,在競(jìng)賽結(jié)果公布前,地理老師預(yù)測(cè)得冠軍的是或;歷史老師預(yù)測(cè)得冠軍的是;政治老師預(yù)測(cè)得冠軍的不可能是或;語文老師預(yù)測(cè)得冠軍的是,而班主任老師看了競(jìng)賽結(jié)果后說以上只有兩位老師都說對(duì)了,則得冠軍的是_____。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知函數(shù),求函數(shù)在時(shí)的值域;
(2)函數(shù)有兩個(gè)不同的極值點(diǎn),,
①求實(shí)數(shù)的取值范圍;
②證明:.
(本題中可以參與的不等式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)的頻率分布直方圖如圖所示.
(1)估計(jì)這組數(shù)據(jù)平均數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取5個(gè),再從這5個(gè)中隨機(jī)抽取2個(gè),求這2個(gè)芒果都來自同一個(gè)質(zhì)量區(qū)間的概率;
(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總計(jì),該種植園中還未摘下的芒果大約還有10000個(gè),經(jīng)銷商提出以下兩種收購方案:
方案①:所有芒果以9元/千克收購;
方案②:對(duì)質(zhì)量低于250克的芒果以2元/個(gè)收購,對(duì)質(zhì)量高于或等于250克的芒果以3元/個(gè)收購.
通過計(jì)算確定種植園選擇哪種方案獲利更多.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】吸煙有害健康,遠(yuǎn)離煙草,珍惜生命。據(jù)統(tǒng)計(jì)一小時(shí)內(nèi)吸煙5支誘發(fā)腦血管病的概率為0.02,一小時(shí)內(nèi)吸煙10支誘發(fā)腦血管病的概率為0.16.已知某公司職員在某一小時(shí)內(nèi)吸煙5支未誘發(fā)腦血管病,則他在這一小時(shí)內(nèi)還能繼吸煙5支不誘發(fā)腦血管病的概率為( )
A. B. C. D. 不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極坐標(biāo)系的極點(diǎn),軸的正半軸為極軸.已知曲線的極坐標(biāo)方程為,是上一動(dòng)點(diǎn),,點(diǎn)的軌跡為.
(1)求曲線的極坐標(biāo)方程,并化為直角坐標(biāo)方程;
(2)若點(diǎn),直線的參數(shù)方程(為參數(shù)),直線與曲線的交點(diǎn)為,當(dāng)取最小值時(shí),求直線的普通方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com