【題目】某“雙一流A類”大學(xué)就業(yè)部從該校2018年已就業(yè)的大學(xué)本科畢業(yè)生中隨機(jī)抽取了100人進(jìn)行問卷調(diào)查,其中一項(xiàng)是他們的月薪收入情況,調(diào)查發(fā)現(xiàn),他們的月薪收入在人民幣1.65萬元到2.35萬元之間,根據(jù)統(tǒng)計(jì)數(shù)據(jù)分組,得到如下的頻率分布直方圖:
(1)為感謝同學(xué)們對(duì)這項(xiàng)調(diào)查工作的支持,該校利用分層抽樣的方法從樣本的前兩組中抽出6人,各贈(zèng)送一份禮品,并從這6人中再抽取2人,各贈(zèng)送某款智能手機(jī)1部,求獲贈(zèng)智能手機(jī)的2人月薪都不低于1.75萬元的概率;
(2)同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表.
(i)求這100人月薪收入的樣本平均數(shù)和樣本方差;
(ii)該校在某地區(qū)就業(yè)的2018屆本科畢業(yè)生共50人,決定于2019國慶長假期間舉辦一次同學(xué)聯(lián)誼會(huì),并收取一定的活動(dòng)費(fèi)用,有兩種收費(fèi)方案:
方案一:設(shè),月薪落在區(qū)間左側(cè)的每人收取400元,月薪落在區(qū)間內(nèi)的每人收到600元,月薪落在區(qū)間右側(cè)的每人收取800元.
方案二:按每人一個(gè)月薪水的3%收取;用該校就業(yè)部統(tǒng)計(jì)的這100人月薪收入的樣本頻率進(jìn)行估算,哪一種收費(fèi)方案能收到更多的費(fèi)用?
參考數(shù)據(jù):.
【答案】(1);(2)(i)2,;(ii)方案一.
【解析】
(1)根據(jù)頻率分布直方圖求出前2組中的人數(shù),由分層抽樣得抽取的人數(shù),然后把6人編號(hào),可寫出任取2人的所有組合,也可得出獲贈(zèng)智能手機(jī)的2人月薪都不低于1.75萬元的所有組合,從而可計(jì)算出概率.
(2)根據(jù)頻率分布直方圖計(jì)算出均值和方差,然后求出區(qū)間,結(jié)合頻率分布直方圖可計(jì)算出兩方案收取的費(fèi)用.
(1)第一組有人,第二組有人.
按照分層抽樣抽6人時(shí),第一組抽1人,記為,第二組抽5人,記為,,,,.
從這6人中抽2人共有15種:,,,,,,, ,,,,,,,.
獲贈(zèng)智能手機(jī)的2人月薪都不低于1.75萬元的10種:,, ,,,,,,,.
于是獲贈(zèng)智能手機(jī)的2人月薪都超過1.75萬元的概率.
(2)(i)這100人月薪收入的樣本平均數(shù)和樣本方差分別是
;
(ii)方案一:
月薪落在區(qū)間左側(cè)收活動(dòng)費(fèi)用約為(萬元);
月薪落在區(qū)間收活動(dòng)費(fèi)用約為(萬元);
月薪落在區(qū)間右側(cè)收活動(dòng)費(fèi)用約為(萬元);、
因此方案一,這50人共收活動(dòng)費(fèi)用約為3.01(萬元).
方案二:這50人共收活動(dòng)費(fèi)用約為(萬元).
故方案一能收到更多的費(fèi)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sin(2x+φ)+ cos(2x+φ)(0<φ<π)圖象向左平移 個(gè)單位后,得到函數(shù)的圖象關(guān)于點(diǎn)( ,0)對(duì)稱,則函數(shù)g(x)=cos(x+φ)在[﹣ , ]上的最小值是( )
A.﹣
B.﹣
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓E: =1(a>b>0)的離心率為 ,焦距為2.(14分)
(Ⅰ)求橢圓E的方程.
(Ⅱ)如圖,該直線l:y=k1x﹣ 交橢圓E于A,B兩點(diǎn),C是橢圓E上的一點(diǎn),直線OC的斜率為k2 , 且看k1k2= ,M是線段OC延長線上一點(diǎn),且|MC|:|AB|=2:3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點(diǎn)分別為S,T,求∠SOT的最大值,并求取得最大值時(shí)直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】幾位大學(xué)生響應(yīng)國家的創(chuàng)業(yè)號(hào)召,開發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項(xiàng)是20 , 接下來的兩項(xiàng)是20 , 21 , 再接下來的三項(xiàng)是20 , 21 , 22 , 依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項(xiàng)和為2的整數(shù)冪.那么該款軟件的激活碼是( 。
A.440
B.330
C.220
D.110
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓: ,點(diǎn).
(1)求經(jīng)過點(diǎn)且與圓相切的直線的方程;
(2)過點(diǎn)的直線與圓相交于、兩點(diǎn),為線段的中點(diǎn),求線段長度的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}和{bn}是兩個(gè)等差數(shù)列,記cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs這s個(gè)數(shù)中最大的數(shù).(13分)
(1)若an=n,bn=2n﹣1,求c1 , c2 , c3的值,并證明{cn}是等差數(shù)列;
(2)證明:或者對(duì)任意正數(shù)M,存在正整數(shù)m,當(dāng)n≥m時(shí), >M;或者存在正整數(shù)m,使得cm , cm+1 , cm+2 , …是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若 =λ +μ ,則λ+μ的最大值為( )
A.3
B.2
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知袋子中放有大小和形狀相同的小球若干,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球1個(gè),標(biāo)號(hào)為2的小球n個(gè).若從袋子中隨機(jī)抽取1個(gè)小球,取到標(biāo)號(hào)為2的小球的概率是.
(1)求n的值;
(2)從袋子中不放回地隨機(jī)抽取2個(gè)小球,記第一次取出的小球標(biāo)號(hào)為a,第二次取出的小球標(biāo)號(hào)為b.
①記“”為事件A,求事件A的概率;
②在區(qū)間內(nèi)任取2個(gè)實(shí)數(shù),求事件“恒成立”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導(dǎo)函數(shù)f′(x)的極值點(diǎn)是f(x)的零點(diǎn).(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值)
(Ⅰ)求b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;
(Ⅱ)證明:b2>3a;
(Ⅲ)若f(x),f′(x)這兩個(gè)函數(shù)的所有極值之和不小于﹣ ,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com