在等比數(shù)列{
an}中,
a1=2,前
n項和為
Sn,若數(shù)列{
an+1}也是等比數(shù)列,則
Sn等于( ).
∵數(shù)列{
an}為等比數(shù)列,設(shè)公比為
q,∴
an=2
qn-1,又∵{
an+1}也是等比數(shù)列,則(
an+1+1)
2=(
an+1)·(
an+2+1)⇒
+2
an+1=
anan+2+
an+
an+2⇒
an+
an+2=2
an+1⇒
an(1+
q2-2
q)=0⇒
q=1.即
an=2,所以
Sn=2
n.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:單選題
公比為2的等比數(shù)列{
an}的各項都是正數(shù),且
a4a10=16,則
a6=( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設(shè)
Sn為數(shù)列{
an}的前
n項和,
Sn=(-1)
nan-
,
n∈N
*,則:
(1)
a3=________;
(2)
S1+
S2+…+
S100=________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在等比數(shù)列{
an}中,
a3=6,前3項和
S3=18,則公比
q的值為( ).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在數(shù)列{
an}中,
a1=1,{
an}的前
n項和
Sn滿足2
Sn=
an+1.
(1)求數(shù)列{
an}的通項公式;
(2)若存在
n∈N
*,使得
λ≤
,求實數(shù)
λ的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知數(shù)列{
an}為等比數(shù)列,
Sn是它的前
n項和,若
a2·
a3=2
a1,且
a4與2
a7的等差中項為
,則
S6= ( ).
A.35 | B.33 | C.31 | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
各項都是正數(shù)的等比數(shù)列
的公比
,且
成等差數(shù)列,則
的值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知等比數(shù)列
,它的前
項為
,前
項和為
,則使得
的
的值是( )
查看答案和解析>>