【題目】若a>0,b>0,則稱(chēng) 為a,b的調(diào)和平均數(shù).如圖,點(diǎn)C為線(xiàn)段AB上的點(diǎn),且AC=a,BC=b,點(diǎn)O為線(xiàn)段AB中點(diǎn),以AB為直徑做半圓,過(guò)點(diǎn)C作AB的垂線(xiàn)交半圓于D,連結(jié)OD,AD,BD.過(guò)點(diǎn)C作OD的垂線(xiàn),垂足為E,則圖中線(xiàn)段OD的長(zhǎng)度是a,b的算術(shù)平均數(shù),那么圖中表示a,b的幾何平均數(shù)與調(diào)和平均數(shù)的線(xiàn)段,以及由此得到的不等關(guān)系分別是( )
A.
B.
C.
D.
【答案】B
【解析】解:由Rt△ACD∽△RtDCB得: ,即 ,
∴CD= ,即線(xiàn)段CD表示a,b的幾何平均數(shù);
∵OC=AC﹣OA=a﹣ = ,
∵sin∠OCE=sin∠ODC= = = ,
∴OE=OCsin∠OCE= ,
∴DE=OD﹣OE= ﹣ = ,∴線(xiàn)段DE表示a,b的調(diào)和平均數(shù);
當(dāng)a≠b時(shí),由三角形的性質(zhì)可知DE<CD,即 < ,
當(dāng)a=b時(shí),OD與CD重合,此時(shí)E,O,C三點(diǎn)重合,故DE=CD,即 ,
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,圓O的參數(shù)方程為(為參數(shù)).過(guò)點(diǎn)()且傾斜角為的直線(xiàn)與圓O交于A、B兩點(diǎn).
(1)求的取值范圍;
(2)求AB中點(diǎn)P的軌跡的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】電容器充電后,電壓達(dá)到100 V,然后開(kāi)始放電,由經(jīng)驗(yàn)知道,此后電壓U隨時(shí)間t變化的規(guī)律用公式U=Aebt(b<0)表示,現(xiàn)測(cè)得時(shí)間t(s)時(shí)的電壓U(V)如下表:
t(s) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
U(V) | 100 | 75 | 55 | 40 | 30 | 20 | 15 | 10 | 10 | 5 | 5 |
試求:電壓U對(duì)時(shí)間t的回歸方程.(提示:對(duì)公式兩邊取自然對(duì)數(shù),把問(wèn)題轉(zhuǎn)化為線(xiàn)性回歸分析問(wèn)題)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n的展開(kāi)式中x的系數(shù)恰好是數(shù)列{an}的前n項(xiàng)和Sn .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿(mǎn)足 ,記數(shù)列{bn}的前n項(xiàng)和為T(mén)n , 求證:Tn<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cosθ,直線(xiàn)l與圓C交于A,B兩點(diǎn).
(1)求圓C的直角坐標(biāo)方程及弦AB的長(zhǎng);
(2)動(dòng)點(diǎn)P在圓C上(不與A,B重合),試求△ABP的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,長(zhǎng)度單位相同,建立極坐標(biāo)系,已知圓A的參數(shù)方程為 (其中θ為參數(shù)),圓B的極坐標(biāo)方程為ρ=2sinθ.
(Ⅰ)分別寫(xiě)出圓A與圓B的直角坐標(biāo)方程;
(Ⅱ)判斷兩圓的位置關(guān)系,若兩圓相交,求其公共弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:(a>b>0)的左焦點(diǎn)為F,C與過(guò)原點(diǎn)的直線(xiàn)相交于A,B兩點(diǎn),連接AF,BF.若,,cos ∠ABF=,則C的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=3sinx﹣πx,命題p:x∈(0, ),f(x)<0,則( )
A.p是假命題,¬p:?x∈(0, ),f(x)≥0
B.p是假命題,¬p:?x0∈(0, ),f(x0)≥0
C.p是真命題,¬p:?x∈(0, ),f(x)>0
D.p是真命題,¬p:?x0∈(0, ),f(x0)≥0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sinx﹣xcosx.
(1)討論f(x)在(0,2π)上的單調(diào)性;
(2)若關(guān)于x的方程f(x)﹣x2+2πx﹣m=0在(0,2π)有兩個(gè)根,求實(shí)數(shù)m的取值范圍.
(3)求證:當(dāng)x∈(0, )時(shí),f(x)< x3 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com