11.已知雙曲線$\frac{x^2}{9}-\frac{y^2}{a}$=1的右焦點為$(\sqrt{13},0)$,則該雙曲線的虛軸長為4.

分析 利用雙曲線方程,求出a,b,c的關系,求解即可.

解答 解:雙曲線$\frac{x^2}{9}-\frac{y^2}{a}$=1的右焦點為$(\sqrt{13},0)$,
可得9+a=13,解得a=4,雙曲線的虛軸長為4.
故答案為:4.

點評 本題考查雙曲線的簡單性質的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.如果函數(shù)y=f(x)的定義域為R,對于定義域內的任意x,存在實數(shù)a使得f=f(x+a)=f(-x)成立,則稱此函數(shù)具有“P(a)性質”;
(1)判斷函數(shù)y=sinx是否具有“P(a)性質”,若具有“P(a)性質”,試寫出所有a的值;若不具有“P(a)性質”,請說明理由;
(2)已知y=f(x)具有“P(0)性質”,當x≤0時,f(x)=(x+t)2,t∈R,求y=f(x)在[0,1]上的最大值;
(3)設函數(shù)y=g(x)具有“P(±1)性質”,且當-$\frac{1}{2}$≤x≤$\frac{1}{2}$時,g(x)=|x|,求:當x∈R時,函數(shù)g(x)的解析式,若y=g(x)與y=mx(m∈R)交點個數(shù)為1001個,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|{2}^{x}-1|,x<2}\\{\frac{3}{x-1},x>2}\end{array}\right.$,若方程f(x)-a=0有三個不同的實數(shù)根,則實數(shù)a的取值范圍為( 。
A.(1,3)B.(0,3)C.(0,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.下列命題中:
①在△ABC中,sinA>sinB,則A>B;
②若a>0,b>0,a+b=4,則$\sqrt{a+3}+\sqrt{b+2}$的最大值為3$\sqrt{2}$;
③已知函數(shù)f(x)是一次函數(shù),若數(shù)列{an}的通項公式為an=f(n),則該數(shù)列是等差數(shù)列;
④數(shù)列{bn}的通項公式為bn=qn,則數(shù)列{bn}的前n項和Sn=$\frac{{q(1-{q^n})}}{1-q}$.
正確的命題的序號是①②③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設數(shù)列{an}的前n項和為Sn,已知a1=1,Sn+1=4an+2(n∈N*).
(1)設bn=an+1-2an,證明數(shù)列{bn}是等比數(shù)列(要指出首項、公比);
(2)若cn=nbn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(1)將一顆骰子(一種各個面上分別標有1,2,3,4,5,6個點的正方體玩具)先后拋擲2次,以分別得到的點數(shù)(m,n)作為點P的坐標(m,n),求:點P落在區(qū)域$\left\{\begin{array}{l}x+y≤6\\ x≥0\\ y≥0\end{array}\right.$內的概率;
(2)在區(qū)間[1,6]上任取兩個實數(shù)(m,n),求:使方程x2+mx+n2=0有實數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知四面體P-ABC各面都是直角三角形,且最長棱長PC=2$\sqrt{3}$,則此四面體外接球的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列函數(shù)中,既是奇函數(shù),又在(0,π)上單調遞增的是( 。
A.y=tanxB.y=exC.y=lgxD.y=x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.曲線f(x)=e2x+1+2x在點(-$\frac{1}{2}$,f(-$\frac{1}{2}$))處的切線與坐標軸圍成的三角形的面積為(  )
A.1B.$\frac{1}{2}$C.2D.$\frac{1}{4}$

查看答案和解析>>

同步練習冊答案