【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可參加一次抽獎.隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該商場對前5天抽獎活動的人數(shù)進行統(tǒng)計,y表示第x天參加抽獎活動的人數(shù),得到統(tǒng)計表如下:

x

1

2

3

4

5

y

50

60

70

80

100

經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)yx具有線性相關(guān)關(guān)系.

1)若從這5天隨機抽取兩天,求至少有1天參加抽獎人數(shù)超過70的概率;

2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程,并估計該活動持續(xù)7天,共有多少名顧客參加抽獎?

參考公式及數(shù)據(jù):.

【答案】(1);(2,588名

【解析】

1)列出5天中隨機抽取2天的所有情況,共10種結(jié)果,選出滿足條件的情況,代入公式,即可求解。

(2)求出,的值,結(jié)合題中條件,求出,代入即可求出回歸直線方程,并預(yù)測第6,7天參與抽獎的人數(shù),即可求出總?cè)藬?shù)。

(1)設(shè)第天的人數(shù)為,從這5天中隨機抽取2天的情況為:

,,,,,,

共10種結(jié)果;這5天中只有第4,5天的人數(shù)超70人,至少有1天參加抽獎人數(shù)超過70人的情況為:,,,,,,共7種結(jié)果;

則所求事件的概率為.

(2)依題意

,

則此次活動參加抽獎的人數(shù)約為.

線性回歸方程,若該活動持續(xù)7天,共有588名顧客參加抽獎.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x|+|x﹣4|,則不等式f(x2+2)>f(x)的解集用區(qū)間表示為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}前n項和Sn滿足:2Sn+an=1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè) ,數(shù)列{bn}的前n項和為Tn , 求證:Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)F1 , F2為雙曲線C: 的左,右焦點,P,Q為雙曲線C右支上的兩點,若 =2 ,且 =0,則該雙曲線的離心率是(
A.
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究“晚上喝綠茶與失眠”有無關(guān)系,調(diào)查了100名人士,得到下面的列聯(lián)表:

失眠

不失眠

合計

晚上喝綠茶

16

40

56

晚上不喝綠茶

5

39

44

合計

21

79

100

由已知數(shù)據(jù)可以求得:,則根據(jù)下面臨界值表:

0.050

0.010

0.001

3.841

6.635

10.828

可以做出的結(jié)論是( )

A. 在犯錯誤的概率不超過0.01的前提下認(rèn)為“晚上喝綠茶與失眠有關(guān)”

B. 在犯錯誤的概率不超過0.01的前提下認(rèn)為“晚上喝綠茶與失眠無關(guān)”

C. 在犯錯誤的概率不超過0.05的前提下認(rèn)為“晚上喝綠茶與失眠有關(guān)”

D. 在犯錯誤的概率不超過0.05的前提下認(rèn)為“晚上喝綠茶與失眠無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式的解集為

(1)求a,b的值.

(2)當(dāng)時,解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自2016年1月1日起,我國全面二孩政策正式實施,這次人口與生育政策的歷史性調(diào)整,使得“要不要再生一個”“生二孩能休多久產(chǎn)假”等成為千千萬萬個家庭在生育決策上避不開的話題.為了解針對產(chǎn)假的不同安排方案形成的生育意愿,某調(diào)查機構(gòu)隨機抽取了200戶有生育二胎能力的適齡家庭進行問卷調(diào)查,得到如下數(shù)據(jù):

產(chǎn)假安排(單位:周)

14

15

16

17

18

有生育意愿家庭數(shù)

4

8

16

20

26


(1)若用表中數(shù)據(jù)所得的頻率代替概率,面對產(chǎn)假為14周與16周,估計某家庭有生育意愿的概率分別為多少?
(2)假設(shè)從5種不同安排方案中,隨機抽取2種不同安排分別作為備選方案,然后由單位根據(jù)單位情況自主選擇. ①求兩種安排方案休假周數(shù)和不低于32周的概率;
②如果用ξ表示兩種方案休假周數(shù)和.求隨機變量ξ的分布及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果數(shù)列,),滿足:①,;

,那么稱數(shù)列數(shù)列.

已知數(shù)列,,,;數(shù)列,,,.試判斷數(shù)列,是否為數(shù)列.

是否存在一個等差數(shù)列是數(shù)列?請證明你的結(jié)論.

如果數(shù)列數(shù)列,求證:數(shù)列中必定存在若干項之和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)要從高一年級甲、乙兩個班級中選擇一個班參加市電視臺組織的“環(huán)保知識競賽”.該校對甲、乙兩班的參賽選手(每班7人)進行了一次環(huán)境知識測試,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖所示,其中甲班學(xué)生的平均分是85分,乙班學(xué)生成績的中位數(shù)是85.

(1)求的值;

(2)根據(jù)莖葉圖,求甲、乙兩班同學(xué)成績的方差的大小,并從統(tǒng)計學(xué)角度分析,該校應(yīng)選擇甲班還是乙班參賽.

查看答案和解析>>

同步練習(xí)冊答案