【題目】某烘焙店加工一個成本為60元的蛋糕,然后以每個120元的價格出售,如果當(dāng)天賣不完,剩下的這種蛋糕作餐廚垃圾處理.
(1)若烘焙店一天加工16個這種蛋糕,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:個,)的函數(shù)解析式;
(2)為了解該種蛋糕的市場需求情況與性別是否有關(guān),隨機統(tǒng)計了100人的購買情況,得如下列聯(lián)表:
男 | 女 | 合計 | |
購買 | 15 | 35 | 50 |
不購買 | 6 | 44 | 50 |
合計 | 21 | 79 | 100 |
問:能否有的把握認(rèn)為是否購買蛋糕與性別有關(guān)?
附:
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
(1) 若,求函數(shù)的單調(diào)區(qū)間;
(2) 若函數(shù)有兩個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,橢圓: 的長軸長為4,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過右焦點作一條不與坐標(biāo)軸平行的直線,若交橢圓與、兩點,點關(guān)于原點的對稱點為,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中:
①已知函數(shù)的定義域為,則函數(shù)的定義域為;
②若集合中只有一個元素,則;
③函數(shù)在上是增函數(shù);
④方程的實根的個數(shù)是1.
所有正確命題的序號是______(請將所有正確命題的序號都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解學(xué)生假期參與志愿服務(wù)活動的情況,隨機調(diào)查了名男生,名女生,得到他們一周參與志愿服務(wù)活動時間的統(tǒng)計數(shù)據(jù)如右表(單位:人):
超過小時 | 不超過小時 | |
男 | ||
女 |
(1)能否有的把握認(rèn)為該校學(xué)生一周參與志愿服務(wù)活動時間是否超過小時與性別有關(guān)?
(2)以這名學(xué)生參與志愿服務(wù)活動時間超過小時的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學(xué)生中隨機抽查名學(xué)生,試估計這名學(xué)生中一周參與志愿服務(wù)活動時間超過小時的人數(shù).
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)、的定義域均為,若對任意,且,具有,則稱函數(shù)為上的單調(diào)非減函數(shù),給出以下命題:① 若關(guān)于點和直線()對稱,則為周期函數(shù),且是的一個周期;② 若是周期函數(shù),且關(guān)于直線對稱,則必關(guān)于無窮多條直線對稱;③ 若是單調(diào)非減函數(shù),且關(guān)于無窮多個點中心對稱,則的圖象是一條直線;④ 若是單調(diào)非減函數(shù),且關(guān)于無窮多條平行于軸的直線對稱,則是常值函數(shù);以上命題中,所有真命題的序號是_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工程隊共有500人,要建造一段6000米的高速公路,工程需要把500人分成兩組,甲組的任務(wù)是完成一段4000米的軟土地帶,乙組的任務(wù)是完成剩下的2000米的硬土地帶,據(jù)測算,軟、硬土地每米的工程量是30工(工為計量單位)和40工.
(1)若平均分配兩組的人數(shù),分別計算兩組完工的時間,并求出此時全隊的筑路工期;
(2)如何分配兩組的人數(shù)會使得全隊的筑路工期最短?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,是正三角形,四邊形為直角梯形,點為中點,且,,,,.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點是曲線上的動點,點在的延長線上,且,點的軌跡為.
(1)求直線及曲線的極坐標(biāo)方程;
(2)若射線與直線交于點,與曲線交于點(與原點不重合),求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com