如圖所示,點(diǎn)A(-1,0),B(2,0),動點(diǎn)M滿足2∠MAB=∠MBA,求點(diǎn)M的軌跡方程.

答案:
解析:

  解析:設(shè)點(diǎn)M(x,y),∠MAB=α,則

  ∠MBA=2α,tanα=kMA

  tan(π-2α)=kMB=-tan2α,

  ∴-tan2α=,

  將tanα=代入得,

  化簡得y=0或=1.

  (1)因?yàn)椤螹BA=2∠MAB,

  ∴|MA|>|MB|,則x≥1,∴=1,且x≥1.

  (2)當(dāng)∠MBA=90°時,MB斜率不存在,此時△MAB為等腰Rt△,點(diǎn)M(2,3)或(2,-3)經(jīng)驗(yàn)證均在曲線上.

  (3)當(dāng)點(diǎn)M為線段AB內(nèi)分點(diǎn)時,滿足題設(shè)∠MBA=2∠MAB,

  ∴y=0且-1<x<2.

  (4)點(diǎn)M在x軸下方時,∠MBA為MB傾斜角,此時MA傾斜角為π-∠MAB,用同樣方法,可求得上述方程.

  綜上所述,點(diǎn)M軌跡方程為

  =1(x≥1)和y=0(-1<x<2).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,點(diǎn)A(1,0).點(diǎn)R在y軸上運(yùn)動,T在x軸上,N為動點(diǎn),且
RT
RA
=0,
RN
+
RT
=0,
(1)設(shè)動點(diǎn)N的軌跡為曲線C,求曲線C的方程;
(2)過點(diǎn)B(-2,0)的直線l與曲線C交于點(diǎn)P、Q,若在曲線C上存在點(diǎn)M,使得△MPQ為以PQ為斜邊的直角三角形,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•永州一模)如圖所示,點(diǎn)A(1,0),B是曲線y=3x2+1上一點(diǎn),向矩形OABC內(nèi)隨機(jī)投一點(diǎn)(該點(diǎn)落在矩形中任一點(diǎn)是等可能的),則所投點(diǎn)落在圖中陰影內(nèi)的概率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖所示,點(diǎn)A(1,0),B是曲線y=3x2+1上一點(diǎn),向矩形OABC內(nèi)隨機(jī)投一點(diǎn)(該點(diǎn)落在矩形中任一點(diǎn)是等可能的),則所投點(diǎn)落在圖中陰影內(nèi)的概率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省茂名市高州市長坡中學(xué)高三(下)期初數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖所示,點(diǎn)A(1,0).點(diǎn)R在y軸上運(yùn)動,T在x軸上,N為動點(diǎn),且=0,
(1)設(shè)動點(diǎn)N的軌跡為曲線C,求曲線C的方程;
(2)過點(diǎn)B(-2,0)的直線l與曲線C交于點(diǎn)P、Q,若在曲線C上存在點(diǎn)M,使得△MPQ為以PQ為斜邊的直角三角形,求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案