【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中,底面ABCD是邊長(zhǎng)為2的正方形.
(1)證明:A1C1平面ACD1;
(2)求異面直線CD與AD1所成角的大;
(3)已知三棱錐D1﹣ACD的體積為,求AA1的長(zhǎng).
【答案】(1)見解析(2)90°(3)AA1=1.
【解析】
(1)先證明A1C1AC,即得證;
(2)由CD⊥平面ADD1A1,可得CD⊥AD1,即得解;
(3)由,AA1的長(zhǎng)可看作三棱錐D1﹣ACD的高,利用體積即得解.
(1)證明:在長(zhǎng)方體中,因A1A=CC1,A1ACC1,可得A1C1AC,
A1C1不在平面ACD1內(nèi),AC平面ACD1,
則A1C1平面ACD1;
(2)解:因?yàn)?/span>CD⊥平面ADD1A1,AD1平面ADD1A1,可得CD⊥AD1,
所以異面直線CD與AD1所成角90°
(3)解:由三棱錐D1﹣ACD的體積為,
由于平面ACD,且
可得,
∴AA1=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題方程表示雙曲線;命題不等式的解集是. 為假, 為真,求的取值范圍.
【答案】
【解析】試題分析:由命題方程表示雙曲線,求出的取值范圍,由命題不等式的解集是,求出的取值范圍,由為假, 為真,得出一真一假,分兩種情況即可得出的取值范圍.
試題解析:
真
,
真 或
∴
真假
假真
∴范圍為
【題型】解答題
【結(jié)束】
18
【題目】如圖,設(shè)是圓上的動(dòng)點(diǎn),點(diǎn)是在軸上的投影, 為上一點(diǎn),且.
(1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;
(2)求過(guò)點(diǎn)且斜率為的直線被所截線段的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,四邊形是邊長(zhǎng)為2的菱形,,為的中點(diǎn),以為折痕將折起到的位置,使得平面平面,如圖2.
(1)證明:平面平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,已知每售出一箱酸奶的利潤(rùn)為50元,當(dāng)天未售出的酸奶降價(jià)處理,以每箱虧損10元的價(jià)格全部處理完.若供不應(yīng)求,可從其它商店調(diào)撥,每銷售1箱可獲利30元.假設(shè)該超市每天的進(jìn)貨量為14箱,超市的日利潤(rùn)為y元.為確定以后的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了最近50天銷售該酸奶的市場(chǎng)日需求量,其頻率分布表如圖所示.
(1)求的值;
(2)求y關(guān)于日需求量的函數(shù)表達(dá)式;
(3)以50天記錄的酸奶需求量的頻率作為酸奶需求量發(fā)生的概率,估計(jì)日利潤(rùn)在區(qū)間[580,760]內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,是不共面的三個(gè)向量,則能構(gòu)成一個(gè)基底的一組向量是( 。
A. 2,﹣,+2 B. 2,﹣,+2
C. ,2,﹣ D. ,+,﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),圓:與軸的正半軸的交點(diǎn)是,過(guò)點(diǎn)的直線與圓交于不同的兩點(diǎn).
(1)若直線與軸交于,且,求直線的方程;
(2)設(shè)直線,的斜率分別是,,求的值;
(3)設(shè)的中點(diǎn)為,點(diǎn),若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.
(1)求角B的大;
(2)若△ABC外接圓的半徑為,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)(其中,為自然對(duì)數(shù)的底數(shù)).
①,使得直線為函數(shù)的一條切線;
②對(duì),函數(shù)的導(dǎo)函數(shù)無(wú)零點(diǎn);
③對(duì),函數(shù)總存在零點(diǎn);
則上述結(jié)論正確的是______.(寫出所有正確的結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大氣污染是我國(guó)目前最突出的環(huán)境問(wèn)題之一,其中工廠廢氣是大氣污染的重大污染源之一。工廠廢氣未經(jīng)凈化處理排放至空氣中,除了對(duì)空氣質(zhì)量造成嚴(yán)重破壞,還會(huì)對(duì)人體的健康造成重大威脅。長(zhǎng)期生活在污染的空氣中,生活質(zhì)量及身體健康將急劇下降。某工廠因?yàn)槲廴締?wèn)題需改進(jìn)技術(shù),2019年初購(gòu)進(jìn)一臺(tái)環(huán)保新機(jī)器投入生產(chǎn),機(jī)器的成本價(jià)為36萬(wàn)元,第年該機(jī)器包括維修費(fèi)和機(jī)器護(hù)理費(fèi)用在內(nèi),每年另需投人費(fèi)用萬(wàn)元,購(gòu)進(jìn)該機(jī)器后每年盈利20萬(wàn)元.
(1)問(wèn)該機(jī)器投入生產(chǎn)第幾年,工廠開始盈利(即總收入大于所有投人的費(fèi)用)?
(2)由于機(jī)器使用年限越大維修等費(fèi)用越高,所以工廠決定當(dāng)年平均利潤(rùn)最大時(shí)將該機(jī)器以5萬(wàn)元低價(jià)處理,問(wèn)使用該機(jī)器幾年后工廠年平均利潤(rùn)最大?此時(shí)工廠獲得的總利潤(rùn)為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com