• ( 12分)如圖,圓柱內(nèi)有一個(gè)三棱柱,三棱柱的底面為圓柱底面的內(nèi)接三角形,且是圓的直徑。
    (1)求證:平面
    (2)設(shè),在圓柱內(nèi)隨機(jī)選取一個(gè)點(diǎn),記該點(diǎn)取自三棱
    的概率為
    (i)當(dāng)點(diǎn)C在圓周上運(yùn)動(dòng)時(shí),求的最大值;
    (ii)記平面與平面所成的角為,當(dāng)
    取最大值時(shí),求的值。

    解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/53/a/2cfw6.gif" style="vertical-align:middle;" />平面ABC,平面ABC,所以,
    因?yàn)锳B是圓O直徑,所以,又,所以平面,
    平面,所以平面平面!4分
    (2)(i)設(shè)圓柱的底面半徑為,則AB=,
    故三棱柱的體積為=,
    又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/15/c/1zpiv3.gif" style="vertical-align:middle;" />,
    所以=,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,
    從而,而圓柱的體積,
    =當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,
    所以的最大值是!8分
    (ii)由(i)可知,取最大值時(shí),,于是以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系(如圖),則C(r,0,0),B(0,r,0),(0,r,2r),
    因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a1/0/1c5td4.gif" style="vertical-align:middle;" />平面,所以是平面的一個(gè)法向量,
    設(shè)平面的法向量,由,故,
    得平面的一個(gè)法向量為,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f5/5/6b8bs.gif" style="vertical-align:middle;" />,
    所以!12分

    解析

    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來(lái)源:2011屆福建省南安一中高三上學(xué)期期末考試數(shù)學(xué)文卷 題型:解答題

    (本題滿分12分)如圖,圓軸的正半軸的交點(diǎn)為,點(diǎn)、在圓上,且點(diǎn)位于第一象限,點(diǎn)的坐標(biāo)為,
    (Ⅰ)求圓的半徑及點(diǎn)的坐標(biāo)(用表示);
    (Ⅱ)若,求的值.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省福州市高三綜合練習(xí)文科數(shù)學(xué)試卷(解析版) 題型:解答題

    (本小題滿分12分)

    如圖,圓軸相切于點(diǎn),與軸正半軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),且

             (Ⅰ)求圓的方程;

             (Ⅱ)過點(diǎn)任作一條直線與橢圓相交于兩點(diǎn),連接,求證:

     

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源:2013屆新疆農(nóng)七師高級(jí)中學(xué)高二上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

    (本小題滿分12分)如圖,圓內(nèi)有一點(diǎn)P(—1,2),AB為過點(diǎn)P的弦。

    (1)當(dāng)弦AB的傾斜角為135°時(shí),求AB所在的直線方程及|AB|;

    (2)當(dāng)弦AB被點(diǎn)P平分時(shí),寫出直線AB的方程。

     

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三上學(xué)期期末考試數(shù)學(xué)文卷 題型:解答題

    (本題滿分12分)如圖,圓軸的正半軸的交點(diǎn)為,點(diǎn)、在圓上,且點(diǎn)位于第一象限,點(diǎn)的坐標(biāo)為,

    (Ⅰ)求圓的半徑及點(diǎn)的坐標(biāo)(用表示);

    (Ⅱ)若,求的值.

     

     

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省淄博市高三第一學(xué)期期末數(shù)學(xué)理卷 題型:解答題

    (本小題滿分12分)

    如圖,圓與圓的半徑都等于1,. 過動(dòng)點(diǎn)分別作圓、圓的切線分別為切點(diǎn)),使得|PM|=|PN|.

    試建立適當(dāng)?shù)淖鴺?biāo)系,并求動(dòng)點(diǎn)的軌跡方程.

     

    查看答案和解析>>

    同步練習(xí)冊(cè)答案