【題目】已知函數(shù)f(x)=sin2x+2 sin(x+ )cos(x﹣ )﹣cos2x﹣ .
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)在[﹣ , π]上的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2013年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)求第3,4,5組的頻率;
(2)為了了解最優(yōu)秀學(xué)生的情況,該校決定在筆試成績(jī)高的第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3,4,5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=a(a∈R),an+1= ,n∈N*;
(1)若0<an≤6,求證:0<an+1≤6;
(2)若a=5,求S2016;
(3)若a= (m∈N*),求S4m+2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的各項(xiàng)均為不等于1的正數(shù),數(shù)列{bn}滿足bn=lgan,b3=18,b6=12,則數(shù)列{bn}的前n項(xiàng)和的最大值等于( )
A. 126 B. 130 C. 132 D. 134
【答案】C
【解析】
由題意可知,lga3=b3,lga6=b6再由b3,b6,用a1和q表示出a3和b6,進(jìn)而求得q和a1,根據(jù){an}為正項(xiàng)等比數(shù)列推知{bn}為等差數(shù)列,進(jìn)而得出數(shù)列bn的通項(xiàng)公式和前n項(xiàng)和,可知Sn的表達(dá)式為一元二次函數(shù),根據(jù)其單調(diào)性進(jìn)而求得Sn的最大值.
由題意可知,lga3=b3,lga6=b6.
又∵b3=18,b6=12,則a1q2=1018,a1q5=1012,
∴q3=10﹣6.
即q=10﹣2,∴a1=1022.
又∵{an}為正項(xiàng)等比數(shù)列,
∴{bn}為等差數(shù)列,
且d=﹣2,b1=22.
故bn=22+(n﹣1)×(﹣2)=﹣2n+24.
∴Sn=22n+×(﹣2)
=﹣n2+23n=,又∵n∈N*,故n=11或12時(shí),(Sn)max=132.
故答案為:C.
【點(diǎn)睛】
這個(gè)題目考查的是等比數(shù)列的性質(zhì)和應(yīng)用;解決等差等比數(shù)列的小題時(shí),常見的思路是可以化基本量,解方程;利用等差等比數(shù)列的性質(zhì)解決題目;還有就是如果題目中涉及到的項(xiàng)較多時(shí),可以觀察項(xiàng)和項(xiàng)之間的腳碼間的關(guān)系,也可以通過這個(gè)發(fā)現(xiàn)規(guī)律。
【題型】單選題
【結(jié)束】
12
【題目】已知數(shù)列是遞增數(shù)列,且對(duì),都有,則實(shí)數(shù)的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M是滿足下列性制的函數(shù)f(x)的全體,存在實(shí)數(shù)a、k(k≠0),對(duì)于定義域內(nèi)的任意x均有f(a+x)=kf(a﹣x)成立,稱數(shù)對(duì)(a,k)為函數(shù)f(x)的“伴隨數(shù)對(duì)”.
(1)判斷f(x)=x2是否屬于集合M,并說明理由;
(2)若函數(shù)f(x)=sinx∈M,求滿足條件的函數(shù)f(x)的所有“伴隨數(shù)對(duì)”;
(3)若(1,1),(2,﹣1)都是函數(shù)f(x)的“伴隨數(shù)對(duì)”,當(dāng)1≤x<2時(shí),f(x)=cos( x);當(dāng)x=2時(shí),f(x)=0,求當(dāng)2014≤x≤2016時(shí),函數(shù)y=f(x)的解析式和零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,已知與的等比中項(xiàng)為,且與的等差中項(xiàng)為1,求數(shù)列{an}的通項(xiàng)公式。
【答案】或.
【解析】
設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,運(yùn)用等差中項(xiàng)和等比中項(xiàng)的定義,利用等差數(shù)列的求和公式,代入可求a1,d,解方程可求通項(xiàng)an.
設(shè)等差數(shù)列{an}的首項(xiàng),公差為,則通項(xiàng)為,
前項(xiàng)和為,依題意有,
其中,由此可得,
整理得, 解方程組得或,
由此得;或.
經(jīng)檢驗(yàn)和均合題意.
所以所求等差數(shù)列的通項(xiàng)公式為或.
【點(diǎn)睛】
本題主要考查了等差數(shù)列的通項(xiàng)公式和性質(zhì)及等比數(shù)列中項(xiàng)的性質(zhì),數(shù)列通項(xiàng)的求法中有常見的已知和的關(guān)系,求表達(dá)式,一般是寫出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用。
【題型】解答題
【結(jié)束】
20
【題目】等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=3,前n項(xiàng)和為Sn,{bn}為等比數(shù)列,b1=1,且b2S2=64,b3S3=960.
(1)求an與bn;
(2)求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,其中a,b,c∈R.
(1)若a=b=c=1,求f(x)的單調(diào)區(qū)間;
(2)若b=c=1,且當(dāng)x≥0時(shí),f(x)≥1恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著生活水平的提高,越來越多的人參與了潛水這項(xiàng)活動(dòng)。某潛水中心調(diào)查了100名男姓與100名女姓下潛至距離水面5米時(shí)是否會(huì)耳鳴,下圖為其等高條形圖:
繪出2×2列聯(lián)表;
②根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為耳鳴與性別有關(guān)系?
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知α,β∈(0, )且sin(α+2β)=
(1)若α+β= ,求sinβ的值;
(2)若sinβ= ,求cosα的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com