(1)已知定點(diǎn)、,動(dòng)點(diǎn)N滿足(O為坐標(biāo)原點(diǎn)),,,,求點(diǎn)P的軌跡方程.
(2)如圖,已知橢圓的上、下頂點(diǎn)分別為,點(diǎn)在橢圓上,且異于點(diǎn),直線與直線分別交于點(diǎn),
(。┰O(shè)直線的斜率分別為、,求證:為定值;
(ⅱ)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),以為直徑的圓是否經(jīng)過(guò)定點(diǎn)?請(qǐng)證明你的結(jié)論.
(1);(2)(ⅰ);(ⅱ)定點(diǎn)或.
【解析】
試題分析:(Ⅰ)由題意,先確定點(diǎn)N是MF1中點(diǎn),然后由確定|PM|=|PF1|,從而得到|∣PF1|-|PF2∣|=||PM|-|PF2||=|MF2|=2<|F1F2|,再根據(jù)雙曲線的幾何性質(zhì),即可得到點(diǎn)P的軌跡方程;(2)(ⅰ)設(shè)出點(diǎn),由斜率公式得到的表達(dá)式,再根據(jù)點(diǎn)在橢圓上,得到其為定值;(ⅱ)將以為直徑的圓上任一點(diǎn)坐標(biāo)設(shè)出,即設(shè)點(diǎn),再根據(jù)過(guò)直徑的弦所對(duì)的圓周角為直角這一幾何性質(zhì)得到,從而得到點(diǎn)的軌跡方程也即以為直徑的圓的方程為
.因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014040704035122371385/SYS201404070404246299264605_DA.files/image014.png">的系數(shù)有參數(shù),故,從而得到圓上定點(diǎn)或.即得到所求.
試題解析:(Ⅰ)連接ON∵ ∴點(diǎn)N是MF1中點(diǎn) ∴|MF2|=2|NO|=2
∵ ∴F1M⊥PN ∴|PM|=|PF1|
∴|∣PF1|-|PF2∣|=||PM|-|PF2||=|MF2|=2<|F1F2|
由雙曲線的定義可知:點(diǎn)P的軌跡是以F1,F(xiàn)2為焦點(diǎn)的雙曲線.
點(diǎn)P的軌跡方程是 4分
(。,,令,則由題設(shè)可知,
直線的斜率,的斜率,又點(diǎn)在橢圓上,所以
,(),從而有.8分
(ⅱ)設(shè)點(diǎn)是以為直徑的圓上任意一點(diǎn),則,又易求得、.所以、.故有
.又,化簡(jiǎn)后得到以為直徑的圓的方程為
.
令,解得或.
所以以為直徑的圓恒過(guò)定點(diǎn)或.
考點(diǎn):1.點(diǎn)的軌跡方程;2.直線與圓錐曲線的位置關(guān)系;3.向量數(shù)量積的坐標(biāo)表示.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
ON |
F1M |
NM |
MP |
MF2 |
F1M |
PN |
x2 |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省常德市高三質(zhì)量檢測(cè)考試數(shù)學(xué)理卷 題型:解答題
(本小題滿分13分)
已知定點(diǎn),,動(dòng)點(diǎn)A滿足|AE|=4,線段AF的垂直平分線交AE于點(diǎn)M。
(1)求點(diǎn)M的軌跡C1的方程;
(2)拋物線C2:與C1在第一象限交于點(diǎn)P,直線PF交拋物線于另一個(gè)點(diǎn)Q,求拋物線的POQ弧上的點(diǎn)R到直線PQ的距離的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分13分)
已知定點(diǎn),,動(dòng)點(diǎn)A滿足|AE|=4,線段AF的垂直平分線交AE于點(diǎn)M。
(1)求點(diǎn)M的軌跡C1的方程;
(2)拋物線C2:與C1在第一象限交于點(diǎn)P,直線PF交拋物線于另一個(gè)點(diǎn)Q,求拋物線的POQ弧上的點(diǎn)R到直線PQ的距離的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知定點(diǎn),,動(dòng)點(diǎn)到定點(diǎn)距離與到定點(diǎn)的距離的比值是.
(1)記動(dòng)點(diǎn)的軌跡為曲線.求曲線的方程,并說(shuō)明方程表示的曲線;
(2)若是圓上任意一點(diǎn),過(guò)作曲線的切線,切點(diǎn)是,求的取值范圍;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com