【題目】下列四個命題:
①函數(shù)的最大值為1;
②“若,則”的逆命題為真命題;
③若為銳角三角形,則有;
④“”是“函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的充分必要條件.
其中所有正確命題的序號為____________.
【答案】③④
【解析】
利用二倍角公式化簡函數(shù),可得,根據(jù)正弦型函數(shù)值域可知①錯誤;確定原命題的逆命題后,通過可知逆命題為假,②錯誤;利用誘導公式和角的范圍可證得結(jié)論,③正確;分類討論去掉函數(shù)中的絕對值符號,根據(jù)二次函數(shù)的性質(zhì)可確定函數(shù)的單調(diào)性,從而得到滿足題意的范圍,進而說明充要條件成立,④正確.
① ,①錯誤
②“若,則”的逆命題為:“若,則”
若,可知,則其逆命題為假命題,②錯誤
③為銳角三角形 ,,
且
同理可得:,
,③正確
④令,解得:,
當時,對恒成立
對稱軸為 在上單調(diào)遞增,充分條件成立
當時,,此時在上單調(diào)遞減,不滿足題意
“”是“在區(qū)間內(nèi)單調(diào)遞增”的充分必要條件,④正確
本題正確結(jié)果:③④
科目:高中數(shù)學 來源: 題型:
【題目】已知各項均為正整數(shù)的數(shù)列{an}的前n項和為Sn,滿足:Sn﹣1+kan=tan2﹣1,n≥2,n∈N*(其中k,t為常數(shù)).
(1)若k=,t=,數(shù)列{an}是等差數(shù)列,求a1的值;
(2)若數(shù)列{an}是等比數(shù)列,求證:k<t.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年,河北等8省公布了高考改革綜合方案將采取“”模式,即語文、數(shù)學、英語必考,然后考生先在物理、歷史中選擇1門,再在思想政治、地理、化學、生物中選擇2門.為了更好進行生涯規(guī)劃,張明同學對高一一年來的七次考試成績進行統(tǒng)計分析,其中物理、歷史成績的莖葉圖如圖所示.
(1)若張明同學隨機選擇3門功課,求他選到物理政治兩門功課的概率;
(2)試根據(jù)莖葉圖分析張明同學應在物理和歷史中選擇哪個學科?并闡述理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知棱長為1的正方體中,下列數(shù)學命題不正確的是( )
A.平面平面,且兩平面的距離為
B.點在線段上運動,則四面體的體積不變
C.與所有12條棱都相切的球的體積為
D.是正方體的內(nèi)切球的球面上任意一點,是外接圓的圓周上任意一點,則的最小值是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
在直角坐標系xOy中,設傾斜角為α的直線l:(t為參數(shù))與曲線C:(θ為參數(shù))相交于不同的兩點A,B.
(Ⅰ)若α=,求線段AB中點M的坐標;
(Ⅱ)若|PA|·|PB|=|OP|,其中P(2,),求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直線和拋物線相交于不同兩點A,B.
(I)求實數(shù)的取值范圍;
(Ⅱ)設AB的中點為M,拋物線C的焦點為F.以MF為直徑的圓與直線l相交于另一點N,且滿足,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點M(x,y)滿足
(1)求點M的軌跡E的方程;
(2)設過點N(﹣1,0)的直線l與曲線E交于A,B兩點,若△OAB的面積為(O為坐標原點).求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙、丁四名同學組成一個4100米接力隊,老師要安排他們四人的出場順序,以下是他們四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老師聽了他們四人的對話,安排了一種合理的出場順序,滿足了他們的所有要求,據(jù)此我們可以斷定在老師安排的出場順序中跑第三棒的人是_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com