【題目】已知函數(shù)

1,求函數(shù)的單調(diào)區(qū)間;

2若對任意的,上恒成立,求實數(shù)的取值范圍.

【答案】(1)時,以單調(diào)遞增,單調(diào)遞減;(時,單調(diào)遞增,單調(diào)遞減;(2) .

【解析】

1 求出,分兩種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;2求出的最大值,問題等價于,即,對恒成立,求出函數(shù)的導數(shù),通過討論的范圍,結(jié)合函數(shù)的單調(diào)性,可篩選出符合題意的的范圍.

1由題意,

.

時,,令;,得,

所以單調(diào)遞增,單調(diào)遞減;

(時,,令

,得,所以,單調(diào)遞增,,單調(diào)遞減.

2,,

時,單調(diào)遞增,則,

恒成立等價于

,對恒成立.

時,,,,此時,

不合題意,舍去 .

時,令,,

,其中,

,則在區(qū)間上單調(diào)遞增.

時,,所以對,,

上單調(diào)遞增,故對任意,,

即不等式上恒成立,滿足題意

時,由在區(qū)間上單調(diào)遞增,

所以存在唯一的使得,且時,

從而時,,所以在區(qū)間上單調(diào)遞減,

時,,即,不符合題意.

綜上所述,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知在等比數(shù)列{an}中,a1=2,且a1,a2a3-2成等差數(shù)列.

1)求數(shù)列{an}的通項公式;

2)若數(shù)列{bn}滿足:,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)①若直線的圖象相切, 求實數(shù)的值;

②令函數(shù),求函數(shù)在區(qū)間上的最大值.

(2)已知不等式對任意的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高考改革后,學生除了語數(shù)外三門必選外,可在A類科目:物理、化學、生物和B類科目:政治、地理、歷史共6個科目中任選3門.

1)若小明同學已經(jīng)確定選了物理,現(xiàn)在他還要從剩余的5科中再選2科,則他在歷史與地理兩科中至少選一科的概率?

2)求小明同學選A類科目數(shù)X的分布列、數(shù)學期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大型商場的空調(diào)在1月到5月的銷售量與月份相關,得到的統(tǒng)計數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷量(百臺)

0.6

0.8

1.2

1.6

1.8

(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調(diào)的月銷量(百件)與月份之間的相關關系.請用最小二乘法求關于的線性回歸方程,并預測6月份該商場空調(diào)的銷售量;

(2)若該商場的營銷部對空調(diào)進行新一輪促銷,對7月到12月有購買空調(diào)意愿的顧客進行問卷調(diào)查.假設該地擬購買空調(diào)的消費群體十分龐大,經(jīng)過營銷部調(diào)研機構(gòu)對其中的500名顧客進行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:

有購買意愿對應的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機抽取6名,再從這6人中隨機抽取3人進行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.

參考公式與數(shù)據(jù):線性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前n項和為,已知,,則數(shù)列的前2n項和為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(Ⅰ)當時,解不等式;

(Ⅱ)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:在五面體中,四邊形是正方形,,

.

(1)證明:平面平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的極值;

2)若有兩個零點,,證明:.

查看答案和解析>>

同步練習冊答案