【題目】已知點(diǎn)F(1,0),點(diǎn)A是直線l1:x=﹣1上的動(dòng)點(diǎn),過(guò)A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點(diǎn)P.
(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)若點(diǎn)M,N是直線l1上兩個(gè)不同的點(diǎn),且△PMN的內(nèi)切圓方程為x2+y2=1,直線PF的斜率為k,求 的取值范圍.
【答案】解:(Ⅰ)∵點(diǎn)F(1,0),點(diǎn)A是直線l1:x=﹣1上的動(dòng)點(diǎn),過(guò)A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點(diǎn)P, ∴點(diǎn)P到點(diǎn)F(1,0)的距離等于它到直線l1的距離,
∴點(diǎn)P的軌跡是以點(diǎn)F為焦點(diǎn),直線l1:x=﹣1為準(zhǔn)線的拋物線,
∴曲線C的方程為y2=4x.
(Ⅱ)設(shè)P(x0 , y0),點(diǎn)M(﹣1,m),點(diǎn)N(﹣1,n),
直線PM的方程為:y﹣m= (x+1),
化簡(jiǎn),得(y0﹣m)x﹣(x0+1)y+(y0﹣m)+m(x0+1)=0,
∵△PMN的內(nèi)切圓的方程為x2+y2=1,
∴圓心(0,0)到直線PM的距離為1,即 =1,
∴ = ,
由題意得x0>1,∴上式化簡(jiǎn),得(x0﹣1)m2+2y0m﹣(x0+1)=0,
同理,有 ,
∴m,n是關(guān)于t的方程(x0﹣1)t2+2y t﹣(x0+1)=0的兩根,
∴m+n= ,mn= ,
∴|MN|=|m﹣n|= = ,
∵ ,|y0|=2 ,
∴|MN|= =2 ,
直線PF的斜率 ,則k=| |= ,
∴ = = ,
∵函數(shù)y=x﹣ 在(1,+∞)上單調(diào)遞增,
∴ ,
∴ ,
∴0< < .
∴ 的取值范圍是(0, )
【解析】(Ⅰ)點(diǎn)P到點(diǎn)F(1,0)的距離等于它到直線l1的距離,從而點(diǎn)P的軌跡是以點(diǎn)F為焦點(diǎn),直線l1:x=﹣1為準(zhǔn)線的拋物線,由此能求出曲線C的方程.(Ⅱ)設(shè)P(x0 , y0),點(diǎn)M(﹣1,m),點(diǎn)N(﹣1,n),直線PM的方程為(y0﹣m)x﹣(x0+1)y+(y0﹣m)+m(x0+1)=0,△PMN的內(nèi)切圓的方程為x2+y2=1,圓心(0,0)到直線PM的距離為1,由x0>1,得(x0﹣1)m2+2y0m﹣(x0+1)=0,同理, ,由此利用韋達(dá)定理、弦長(zhǎng)公式、直線斜率,結(jié)合已知條件能求出 的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高三年級(jí)有500名學(xué)生,為了了解數(shù)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機(jī)抽出若干名學(xué)生在一次測(cè)試中的數(shù)學(xué)成績(jī),制成如下頻率分布表:
分組 | 頻數(shù) | 頻率 |
12 | ||
4 | ||
合計(jì) |
根據(jù)上面圖表,求處的數(shù)值
在所給的坐標(biāo)系中畫出的頻率分布直方圖;
根據(jù)題中信息估計(jì)總體平均數(shù),并估計(jì)總體落在中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線的弦與過(guò)弦的端點(diǎn)的兩條切線所圍成的三角形常被稱為阿基米德三角形,阿基米德三角形有一些有趣的性質(zhì),如:若拋物線的弦過(guò)焦點(diǎn),則過(guò)弦的端點(diǎn)的兩條切線的交點(diǎn)在其準(zhǔn)線上.設(shè)拋物線 >,弦AB過(guò)焦點(diǎn),△ABQ為其阿基米德三角形,則△ABQ的面積的最小值為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)的圖象向右平移個(gè)單位,再將所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到函數(shù)y=g(x)的圖象,則下列關(guān)于函數(shù)y=g(x)的說(shuō)法正確的序號(hào)是____.
(1)當(dāng)時(shí),函數(shù)有最小值; (2)圖象關(guān)于直線對(duì)稱;
(3)圖象關(guān)于點(diǎn)對(duì)稱; (4)在上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(0<φ<π)
(1)當(dāng)φ時(shí),在給定的坐標(biāo)系內(nèi),用“五點(diǎn)法”做出函數(shù)f(x)在一個(gè)周期內(nèi)的圖象;
(2)若函數(shù)f(x)為偶函數(shù),求φ的值;
(3)在(2)的條件下,求函數(shù)在[﹣π,π]上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+2|x+b|(a>0,b>0)的最小值為1.
(1)求a+b的值;
(2)若 恒成立,求實(shí)數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓.
(1)若直線過(guò)定點(diǎn),且與圓相切,求的方程;
(2)若圓的半徑為,圓心在直線上,且與圓外切,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知公比不為1的等比數(shù)列{an}的前5項(xiàng)積為243,且2a3為3a2和a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若數(shù)列{bn}滿足bn=bn﹣1log3an+2(n≥2且n∈N*),且b1=1,求數(shù)列 的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)黨的十九大所提出的教育教學(xué)改革,某校啟動(dòng)了數(shù)學(xué)教學(xué)方法的探索,學(xué)校將髙一年級(jí)部分生源情況基本相同的學(xué)生分成甲、乙兩個(gè)班,每班40人,甲班按原有傳統(tǒng)模式教學(xué),乙班實(shí)施自主學(xué)習(xí)模式.經(jīng)過(guò)一年的教學(xué)實(shí)驗(yàn),將甲、乙兩個(gè)班學(xué)生一年來(lái)的數(shù)學(xué)成績(jī)?nèi)∑骄鶖?shù),兩個(gè)班學(xué)生的平均成績(jī)均在[50,100],按照區(qū)間[50,60),[60,70),[70,80),[80,90),[90,100]進(jìn)行分組,繪制成如下頻率分布直方圖,規(guī)定不低于80分(百分制)為優(yōu)秀,
,
(I)完成表格,并判斷是否有90%以上的把握認(rèn)為“數(shù)學(xué)成績(jī)優(yōu)秀與教學(xué)改革有關(guān)”
〔Ⅱ)從乙班[70,80),[80,90),[90,100]分?jǐn)?shù)段中,按分層抽樣隨機(jī)抽取7名學(xué)生座談,
從中選三位同學(xué)發(fā)言,記來(lái)自[80,90)發(fā)言的人數(shù)為隨機(jī)變量x,求x的分布列和期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com